
Donald G Baird

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10046933/publications.pdf Version: 2024-02-01

DONALD C. BAIRD

#	Article	IF	CITATIONS
1	The morphology and rheology of polymer blends containing a liquid crystalline copolyester. Polymer Engineering and Science, 1987, 27, 653-662.	3.1	292
2	Preparation of polymer–clay nanocomposites and their properties. Advances in Polymer Technology, 2006, 25, 270-285.	1.7	268
3	Tesile toughness of microcellular foams of polystyrene, styrene-acrylonitrile copolymer, and polycarbonate, and the effect of dissolved gas on the tensile toughness of the same polymer matrices and microcellular foams. Polymer Engineering and Science, 1995, 35, 1167-1177.	3.1	109
4	Effect of flow history on the morphology of thermotropic liquid crystalline copolyesters. Polymer Engineering and Science, 1985, 25, 377-388.	3.1	87
5	Impact behavior of microcellular foams of polystyrene and styrene-acrylonitrile copolymer, and single-edge-notched tensile toughness of microcellular foams of polystyrene, styrene-acrylonitrile copolymer, and palycarbonate. Polymer Engineering and Science, 1995, 35, 1178-1183.	3.1	68
6	The development of economical bipolar plates for fuel cells. Journal of Materials Chemistry, 2006, 16, 4385.	6.7	68
7	Rheological Properties of Liquid Crystalline Copolyester Melts. II. Comparison of Capillary and Rotary Rheometer Results. Journal of Rheology, 1985, 29, 539-556.	2.6	67
8	Separating the effects of sparse long-chain branching on rheology from those due to molecular weight in polyethylenes. Journal of Rheology, 2003, 47, 717-736.	2.6	58
9	Shear and extensional rheology of sparsely branched metallocene-catalyzed polyethylenes. Journal of Rheology, 2000, 44, 1151-1167.	2.6	48
10	Effect of matrix molecular weight on the dispersion of nanoclay in unmodified high density polyethylene. Polymer Composites, 2007, 28, 499-511.	4.6	43
11	Rheological Properties of Liquid Crystalline Solutions of Polyâ€pâ€Phenyleneterphthalamide in Sulfuric Acid. Journal of Rheology, 1980, 24, 465-482.	2.6	41
12	Prediction of fiber orientation in the injection molding of long fiber suspensions. Polymer Composites, 2012, 33, 1360-1367.	4.6	32
13	Improved mechanical properties of poly(ethylene terephthalate) nanocomposite fibers. Polymer Engineering and Science, 2010, 50, 2205-2215.	3.1	31
14	The role of transient rheology in polymeric sintering. Rheologica Acta, 2006, 45, 825-839.	2.4	26
15	Comparison of the melt fracture behavior of metallocene and conventional polyethylenes. Rheologica Acta, 2003, 42, 544-556.	2.4	20
16	THE INFLUENCE OF POROUS MEDIA ON THE FLOW OF POLYMER MELTS IN CAPILLARIESâ€. Chemical Engineering Communications, 1983, 21, 293-309.	2.6	19
17	Separation of a thermotropic liquid crystalline polymer from polypropylene composites. Polymer Composites, 1999, 20, 423-435.	4.6	19
18	Shear rheological properties of acrylic copolymers and terpolymers suitable for potentially melt processable carbon fiber precursors. Journal of Applied Polymer Science, 2004, 93, 2856-2865.	2.6	19

DONALD G BAIRD

#	Article	IF	CITATIONS
19	Initial conditions for simulating glass fiber orientation in the filling of center-gated disks. Composites Part A: Applied Science and Manufacturing, 2013, 49, 192-202.	7.6	19
20	Using supercritical carbon dioxide in preparing carbon nanotube nanocomposite: Improved dispersion and mechanical properties. Polymer Composites, 2012, 33, 1033-1043.	4.6	18
21	Application and evaluation of the method of ellipses for measuring the orientation of long, semiâ€flexible fibers. Polymer Composites, 2013, 34, 390-398.	4.6	15
22	Wholly thermoplastic composites from woven preforms based on nylon-11 fibers reinforced in situ with a hydroquinone-based liquid crystalline polyester. Polymer Composites, 1997, 18, 526-538.	4.6	14
23	Thermotropic liquid crystalline polymer reinforced polypropylene composites enhanced with carbon nanotubes for use in fused filament fabrication. Polymer Composites, 2021, 42, 4115-4127.	4.6	14
24	Generation of nylon copolymer reinforced with carbon nanotubes and thermotropic liquid crystalline polymers for use in fused filament fabrication. Polymer Composites, 2021, 42, 4328-4341.	4.6	14
25	Macroscopic fiber orientation model evaluation for concentrated short fiber reinforced polymers in comparison to experimental data. Polymer Composites, 2020, 41, 2542-2556.	4.6	13
26	Prediction of Young's Modulus for Injection Molded Long Fiber Reinforced Thermoplastics. Journal of Composites Science, 2018, 2, 47.	3.0	12
27	<i>In Situ</i> Measurement of Block Copolymer Ordering Kinetics during the Drying of Solution-Cast Films Using Small-Angle X-ray Scattering. Macromolecules, 2012, 45, 3471-3479.	4.8	11
28	New method for producing high-performance thermoplastic polymeric foams. Journal of Applied Polymer Science, 1997, 66, 1543-1550.	2.6	10
29	Generation of lowâ€density highâ€performance poly(arylene ether sulfone) foams using a benign processing technique. Polymer Engineering and Science, 2009, 49, 44-51.	3.1	10
30	Thermotropic liquid crystalline polymer reinforced polyamide composite for fused filament fabrication. Additive Manufacturing, 2021, 40, 101931.	3.0	10
31	Benign reduction of carbon nanotube agglomerates using a supercritical carbon dioxide process. Applied Physics A: Materials Science and Processing, 2014, 117, 1003-1017.	2.3	9
32	Progress in modeling long glass and carbon fiber breakage during injection molding. AIP Conference Proceedings, 2015, , .	0.4	8
33	Obtaining short-fiber orientation model parameters using non-lubricated squeeze flow. Physics of Fluids, 2017, 29, .	4.0	8
34	Note: Initial Results of a Flow Birefringence Study of the Hole Pressure for Polymer Melts. Journal of Rheology, 1984, 28, 439-447.	2.6	7
35	Novel Composites from Blends of Amorphous and Semicrystalline Engineering Thermoplastics with Liquid-Crystalline Polymers. ACS Symposium Series, 1990, , 416-438.	0.5	7
36	Melt processing and rheology of an acrylonitrile copolymer with absorbed carbon dioxide. Polymer Engineering and Science, 2009, 49, 1990-2004.	3.1	7

DONALD G BAIRD

#	Article	IF	CITATIONS
37	Characterization and Analysis of Polyetherimide: Realizing Practical Challenges of Modeling the Extrusion-Based Additive Manufacturing Process. ACS Symposium Series, 2019, , 69-84.	0.5	6
38	The use of flow type dependent strain reduction factor to improve fiber orientation predictions for an injection molded center-gated disk. Physics of Fluids, 2019, 31, .	4.0	6
39	Improved mechanical properties of organoclay/nylon 6 nanocomposites prepared via a supercritical carbon dioxideâ€aided, melt blending method. Polymer Composites, 2015, 36, 527-537.	4.6	5
40	A model incorporating the effects of flow type on fiber orientation for flows with mixed flow kinematics. Journal of Rheology, 2019, 63, 455-464.	2.6	5
41	The influence of processing conditions on tensile properties of wholly thermoplastic composites reinforced with nanotubes. Polymer Composites, 2021, 42, 2225-2241.	4.6	5
42	Pressure profiles along an abrupt 4:1 planar contraction. AICHE Journal, 2003, 49, 2487-2498.	3.6	3
43	The Dynamic Behavior of a Concentrated Non-Brownian Glass Fiber Suspension in Simple Shear Flow. AIP Conference Proceedings, 2008, , .	0.4	3
44	Note: Method for overcoming ductile failure in Münstedt-type extensional rheometers. Journal of Rheology, 2009, 53, 539-545.	2.6	3
45	Efficient parameter identification for macroscopic fiber orientation models with experimental data and a mechanistic fiber simulation. AIP Conference Proceedings, 2020, , .	0.4	3
46	The rotational molding of a thermotropic liquid crystalline polymer. Polymer Engineering and Science, 2005, 45, 410-423.	3.1	2
47	Dispersion of nanoclay into polypropylene with carbon dioxide in the presence of maleated polypropylene. Journal of Applied Polymer Science, 2008, 109, 1048-1056.	2.6	2
48	Effect of sparse longâ€chain branching on the stepâ€strain behavior of a series of wellâ€defined polyethylenes. Polymer Engineering and Science, 2010, 50, 1424-1432.	3.1	1
49	Generation of high performance polyphenylene sulfide-thermotropic liquid crystalline polymer composite filaments for use in fused filament fabrication. AIP Conference Proceedings, 2019, , .	0.4	1
50	The rheology of ultra-high molecular weight poly(ethylene oxide) dispersed in a low molecular weight carrier. Physics of Fluids, 2022, 34, 023304.	4.0	1
51	Critical Comments on "Secondary Flow and Stress Birefringence Patterns in the Pressure Hole,―by Han and Yoo. Journal of Rheology, 1981, 25, 363-366.	2.6	0
52	A Critical Analysis of Using Step-Strain and Extensional Rheology to Obtain the Multi-mode "Pom-Pom― Model Parameters for Branched High-Density Polyethylenes. AIP Conference Proceedings, 2008, , .	0.4	0
53	Rheological and Film-Casting Properties of Well-Characterised Polyethylenes with Different Branching Structure. AIP Conference Proceedings, 2008, , .	0.4	0
54	Simulation of Orientation in Injection Molding of High Aspect Ratio Particle Thermoplastic Composites. AIP Conference Proceedings, 2008, , .	0.4	0

#	Article	IF	CITATIONS
55	Progress in simulating semi-flexible glass fiber orientation in an injection molded end-gated plaque. , 2014, , .		0