
Thomas Knöpfel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10046922/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neurogenic and pericytic plasticity of conditionally immortalized cells derived from renal erythropoietinâ€producing cells. Journal of Cellular Physiology, 2022, 237, 2420-2433.	4.1	6
2	Fateâ€mapping of erythropoietinâ€producing cells in mouse models of hypoxaemia and renal tissue remodelling reveals repeated recruitment and persistent functionality. Acta Physiologica, 2022, 234, e13768.	3.8	17
3	Impaired phosphate transport in SLC34A2 variants in patients with pulmonary alveolar microlithiasis. Human Genomics, 2022, 16, 13.	2.9	3
4	Cover Image, Volume 237, Number 5, May 2022. Journal of Cellular Physiology, 2022, 237, .	4.1	0
5	1,25(OH) ₂ vitamin D ₃ stimulates active phosphate transport but not paracellular phosphate absorption in mouse intestine. Journal of Physiology, 2021, 599, 1131-1150.	2.9	32
6	The proton-activated ovarian cancer GÂprotein-coupled receptor 1 (OGR1) is responsible for renal calcium loss during acidosis. Kidney International, 2020, 97, 920-933.	5.2	22
7	Cre-mediated, loxP independent sequential recombination of a tripartite transcriptional stop cassette allows for partial read-through transcription. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2020, 1863, 194568.	1.9	13
8	Intestinal epithelial ablation of Pitâ€⊋/Slc20a2 in mice leads to sustained elevation of vitamin D ₃ upon dietary restriction of phosphate. Acta Physiologica, 2020, 230, e13526.	3.8	21
9	Paracellular transport of phosphate along the intestine. American Journal of Physiology - Renal Physiology, 2019, 317, G233-G241.	3.4	51
10	Gene panel sequencing identifies a likely monogenic cause in 7% of 235 Pakistani families with nephrolithiasis. Human Genetics, 2019, 138, 211-219.	3.8	26
11	Inhibition of sodium/hydrogen exchanger 3 in the gastrointestinal tract by tenapanor reduces paracellular phosphate permeability. Science Translational Medicine, 2018, 10, .	12.4	91
12	The elevation of circulating fibroblast growth factor 23 without kidney disease does not increaseÂcardiovascular disease risk. Kidney International, 2018, 94, 49-59.	5.2	62
13	Transcellular And Paracellular Permeability For Phosphate Along The Intestinal Epithelia. FASEB Journal, 2018, 32, 747.22.	0.5	0
14	The intestinal phosphate transporter NaPi-IIb (Slc34a2) is required to protect bone during dietary phosphate restriction. Scientific Reports, 2017, 7, 11018.	3.3	30
15	Acute Adaption to Oral or Intravenous Phosphate Requires Parathyroid Hormone. Journal of the American Society of Nephrology: JASN, 2017, 28, 903-914.	6.1	38
16	Renal localization and regulation by dietary phosphate of the MCT14 orphan transporter. PLoS ONE, 2017, 12, e0177942.	2.5	5
17	Intestinal Depletion of NaPi-IIb/ <i>Slc34</i> a2 in Mice: Renal and Hormonal Adaptation. Journal of Bone and Mineral Research, 2015, 30, 1925-1937.	2.8	48
18	Structural Fold and Binding Sites of the Human Na+-Phosphate Cotransporter NaPi-II. Biophysical Journal, 2014, 106, 1268-1279.	0.5	42