Victor Yanke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1004595/publications.pdf

Version: 2024-02-01

567281 477307 66 934 15 29 citations h-index g-index papers 69 69 69 474 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Space weather conditions and spacecraft anomalies in different orbits. Space Weather, 2005, 3, n/a-n/a.	3.7	116
2	Magnetospheric effects in cosmic rays during the unique magnetic storm on November 2003. Journal of Geophysical Research, 2005, 110 , .	3.3	101
3	Coronal Mass Ejections and Non-recurrent Forbush Decreases. Solar Physics, 2014, 289, 3949-3960.	2.5	74
4	The Global Survey Method Applied to Ground-level Cosmic Ray Measurements. Solar Physics, 2018, 293, 1.	2.5	54
5	Global Survey Method for the World Network of Neutron Monitors. Geomagnetism and Aeronomy, 2018, 58, 356-372.	0.8	52
6	Galactic Cosmic Ray Density Variations in Magnetic Clouds. Solar Physics, 2015, 290, 1429-1444.	2.5	49
7	Ground level enhancements of solar cosmic rays during the last three solar cycles. Geomagnetism and Aeronomy, 2010, 50, 21-33.	0.8	45
8	Precursor Effects in Different Cases of Forbush Decreases. Solar Physics, 2012, 276, 337-350.	2.5	35
9	Forbush effects with a sudden and gradual onset. Geomagnetism and Aeronomy, 2012, 52, 292-299.	0.8	33
10	Main Properties of Forbush Effects Related to High-Speed Streams from Coronal Holes. Geomagnetism and Aeronomy, 2018, 58, 154-168.	0.8	30
11	Solar cosmic rays during the extremely high ground level enhancement on 23 February 1956. Annales Geophysicae, 2005, 23, 2281-2291.	1.6	26
12	Temperature effect of the muon component and practical questions for considering it in real time. Bulletin of the Russian Academy of Sciences: Physics, 2011, 75, 820-824.	0.6	21
13	The Asymptotic Longitudinal Cosmic Ray Intensity Distribution as a Precursor of Forbush Decreases. Solar Physics, 2012, 280, 641-650.	2.5	18
14	Forbush Decreases Associated with Western Solar Sources and Geomagnetic Storms: A Study on Precursors. Solar Physics, 2013, 283, 557-563.	2.5	17
15	Relationship between Forbush effect parameters and the heliolongitude of solar sources. Geomagnetism and Aeronomy, 2013, 53, 10-18.	0.8	15
16	Ring of Stations Method in Cosmic Rays Variations Research. Solar Physics, 2020, 295, 1.	2.5	15
17	Efficiency of detection for neutron detectors with different geometries. Bulletin of the Russian Academy of Sciences: Physics, 2011, 75, 866-868.	0.6	14
18	Behavior of the cosmic-ray vector anisotropy before interplanetary shocks. Bulletin of the Russian Academy of Sciences: Physics, 2009, 73, 331-333.	0.6	12

#	Article	IF	CITATIONS
19	Magnetospheric effects of cosmic rays. 1. Long-term changes in the geomagnetic cutoff rigidities for the stations of the global network of neutron monitors. Geomagnetism and Aeronomy, 2016, 56, 381-392.	0.8	10
20	Long-Term Changes in the Number and Magnitude of Forbush-Effects. Geomagnetism and Aeronomy, 2018, 58, 615-624.	0.8	10
21	Procedure to emend neutron monitor data that are affected by snow accumulations on and around the detector housing. Journal of Geophysical Research: Space Physics, 2013, 118, 6852-6857.	2.4	9
22	Estimation of long-term stability of detectors within the global network of neutron monitors. Geomagnetism and Aeronomy, 2007, 47, 251-255.	0.8	8
23	Recurrent and sporadic Forbush-effects in deep solar minimum. Journal of Physics: Conference Series, 2015, 632, 012062.	0.4	8
24	Possible ground level enhancements of solar cosmic rays in 2012. Bulletin of the Russian Academy of Sciences: Physics, 2015, 79, 561-565.	0.6	8
25	Cosmic-ray vector anisotropy and local characteristics of the interplanetary medium. Geomagnetism and Aeronomy, 2017, 57, 389-397.	0.8	8
26	Solar wind temperature–velocity relationship over the last five solar cycles and Forbush decreases associated with different types of interplanetary disturbance. Monthly Notices of the Royal Astronomical Society, 2020, 500, 2786-2797.	4.4	8
27	Simulation of the modulation of galactic cosmic rays during solar activity cycles 21–23. Bulletin of the Russian Academy of Sciences: Physics, 2007, 71, 974-976.	0.6	7
28	Long-period variations in the amplitude-phase interrelation of the first cosmic ray anisotropy harmonic. Geomagnetism and Aeronomy, 2013, 53, 561-570.	0.8	7
29	Forbush-decreases in 19th solar cycle. Journal of Physics: Conference Series, 2013, 409, 012165.	0.4	7
30	Coronal holes in the long-term modulation of cosmic rays. Geomagnetism and Aeronomy, 2016, 56, 257-263.	0.8	7
31	Contributions from changes in various solar indices in cycles 20–23 and 24 to the modulation of cosmic rays. Bulletin of the Russian Academy of Sciences: Physics, 2017, 81, 146-150.	0.6	7
32	Forbush Effects Created by Coronal Mass Ejections with Magnetic Clouds. Geomagnetism and Aeronomy, 2021, 61, 678-687.	0.8	7
33	Behavior of the Speed and Temperature of the Solar Wind during Interplanetary Disturbances Creating Forbush Decreases. Geomagnetism and Aeronomy, 2020, 60, 521-529.	0.8	7
34	Effect of snow in cosmic ray variations and methods for taking it into consideration. Geomagnetism and Aeronomy, 2011, 51, 247-253.	0.8	6
35	Behavior of the cosmic ray density during the initial phase of the Forbush effect. Geomagnetism and Aeronomy, 2016, 56, 645-651.	0.8	6
36	Vector anisotropy of cosmic rays in the beginning of Forbush effects. Geomagnetism and Aeronomy, 2017, 57, 541-548.	0.8	6

#	Article	IF	CITATIONS
37	Influence of Interacting Solar Wind Disturbances on the Variations in Galactic Cosmic Rays. Geomagnetism and Aeronomy, 2021, 61, 792-800.	0.8	6
38	Long-Term Changes in Vertical Geomagnetic Cutoff Rigidities of Cosmic Rays. Physics of Atomic Nuclei, 2018, 81, 1382-1389.	0.4	5
39	Spectrum of long-term cosmic ray variations during the sunspot minimum in 2009. Bulletin of the Russian Academy of Sciences: Physics, 2013, 77, 513-516.	0.6	4
40	Analyzing the temperature effect of high mountain cosmic ray detectors using the database of the global network of muon telescopes. Bulletin of the Russian Academy of Sciences: Physics, 2015, 79, 662-666.	0.6	4
41	Temperature Effect Observed for the Muon Component in the Yakutsk Cosmic-Ray Spectrograph. Physics of Atomic Nuclei, 2018, 81, 776-785.	0.4	4
42	Method of Global Survey by Data of Muon Telescopes. Physics of Atomic Nuclei, 2019, 82, 879-885.	0.4	4
43	Features of the Behavior of Time Parameters of Forbush Decreases Associated with Different Types of Solar and Interplanetary Sources. Geomagnetism and Aeronomy, 2022, 62, 17-31.	0.8	4
44	Size Distributions of Solar Proton Events: Methodological and Physical Restrictions. Solar Physics, 2016, 291, 3685-3704.	2.5	3
45	Planetary long term changes of the cosmic ray geomagnetic cut off rigidities. Journal of Physics: Conference Series, 2019, 1181, 012008.	0.4	3
46	Large Forbush Decreases and their Solar Sources: Features and Characteristics. Solar Physics, 2020, 295, 1.	2.5	3
47	Forbush decreases caused by paired interacting solar wind disturbances. Monthly Notices of the Royal Astronomical Society, 2022, 511, 5897-5908.	4.4	3
48	Relationship between Forbush effects and X-ray flares. Bulletin of the Russian Academy of Sciences: Physics, 2007, 71, 988-990.	0.6	2
49	Cosmic ray events in the beginning of 2012. Journal of Physics: Conference Series, 2013, 409, 012206.	0.4	2
50	Density variations of galactic cosmic rays in magnetic clouds. Geomagnetism and Aeronomy, 2015, 55, 430-441.	0.8	2
51	Distribution of Cosmic Rays in the Heliosphere, According to Data from the Network of Muon Telescope Stations. Bulletin of the Russian Academy of Sciences: Physics, 2019, 83, 547-550.	0.6	2
52	Precursory Signs of Large Forbush Decreases. Solar Physics, 2021, 296, 1.	2.5	2
53	Long-Term Modulation of Cosmic Rays in Solar Cycles 23–24. Bulletin of the Russian Academy of Sciences: Physics, 2021, 85, 1045-1048.	0.6	2
54	Using Data from a Ground-Based Network of Detectors and the PAMELA and AMS-02 Experiments to Compare Long-Term Variations in the Cosmic Ray Flux. Bulletin of the Russian Academy of Sciences: Physics, 2021, 85, 1039-1041.	0.6	2

#	Article	IF	Citations
55	Program for Calculating the Geomagnetic Cutoff Rigidity of Cosmic Rays and the Trajectories of Their Motion. Bulletin of the Russian Academy of Sciences: Physics, 2021, 85, 1297-1301.	0.6	2
56	Forbush decreases in the 19th solar cycle. Bulletin of the Russian Academy of Sciences: Physics, 2013, 77, 535-537.	0.6	1
57	Seasonal variations of the muon flux in the MUSTANG super telescope data. Bulletin of the Russian Academy of Sciences: Physics, 2013, 77, 561-565.	0.6	1
58	Modeling variations in CR density in magnetic clouds. Bulletin of the Russian Academy of Sciences: Physics, 2015, 79, 637-639.	0.6	1
59	Size Distribution of Forbush Effects. Geomagnetism and Aeronomy, 2018, 58, 809-816.	0.8	1
60	Experimental Spectrum of Cosmic Ray Variations in Earth Orbit, According to AMS-02 Data. Bulletin of the Russian Academy of Sciences: Physics, 2021, 85, 1042-1044.	0.6	1
61	Recognition of Geomagnetic Storm Based on Neural Network Model Estimates of Dst Indices. Journal of Computer and Systems Sciences International, 2022, 61, 54-64.	0.6	1
62	Large Scale Modulation: View from the Earth Points. Physics of Atomic Nuclei, 2021, 84, 1159-1170.	0.4	1
63	Anomalous Forbush effects from sources far from Sun center. Proceedings of the International Astronomical Union, 2008, 4, 451-456.	0.0	O
64	Long-Term Trends in Forbush Decrease Activity over the Last Six Solar Cycles. Bulletin of the Russian Academy of Sciences: Physics, 2019, 83, 566-568.	0.6	0
65	An Unusual Decrease in the Intensity of Cosmic Rays in May 2019 during the Solar Minimum. Bulletin of the Russian Academy of Sciences: Physics, 2021, 85, 588-591.	0.6	0
66	Heliospheric Modulation of Cosmic Rays in the Era of Neutron Monitoring. Bulletin of the Russian Academy of Sciences: Physics, 2021, 85, 1052-1054.	0.6	0