Mark J Smyth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1004513/publications.pdf

Version: 2024-02-01

177 336 98,212 649 153 286 citations h-index g-index papers 731 731 731 76855 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	NKG7 Is Required for Optimal Antitumor T-cell Immunity. Cancer Immunology Research, 2022, 10, 154-161.	3.4	16
2	Dietary <i>Lactobacillus</i> -Derived Exopolysaccharide Enhances Immune-Checkpoint Blockade Therapy. Cancer Discovery, 2022, 12, 1336-1355.	9.4	56
3	Systemic administration of IL \hat{a} \in 33 induces a population of circulating KLRG1 hi type 2 innate lymphoid cells and inhibits type 1 innate immunity against multiple myeloma. Immunology and Cell Biology, 2021, 99, 65-83.	2.3	7
4	Cancer Immunotherapy and the Nectin Family. Annual Review of Cancer Biology, 2021, 5, 203-219.	4.5	14
5	BET inhibition blocks inflammation-induced cardiac dysfunction and SARS-CoV-2 infection. Cell, 2021, 184, 2167-2182.e22.	28.9	131
6	Innate myeloid cells in the tumor microenvironment. Current Opinion in Immunology, 2021, 69, 18-28.	5.5	13
7	ATP and cancer immunosurveillance. EMBO Journal, 2021, 40, e108130.	7.8	105
8	Myeloid immunosuppression and immune checkpoints in the tumor microenvironment. Cellular and Molecular Immunology, 2020, 17, 1-12.	10.5	273
9	Tumor intrinsic and extrinsic immune functions of CD155. Seminars in Cancer Biology, 2020, 65, 189-196.	9.6	85
10	MAIT Cells Promote Tumor Initiation, Growth, and Metastases via Tumor MR1. Cancer Discovery, 2020, 10, 124-141.	9.4	101
11	Eomes-Dependent Loss of the Co-activating Receptor CD226 Restrains CD8+ T Cell Anti-tumor Functions and Limits the Efficacy of Cancer Immunotherapy. Immunity, 2020, 53, 824-839.e10.	14.3	85
12	CD155 on Tumor Cells Drives Resistance to Immunotherapy by Inducing the Degradation of the Activating Receptor CD226 in CD8+ TÂCells. Immunity, 2020, 53, 805-823.e15.	14.3	79
13	TREM2 marks tumor-associated macrophages. Signal Transduction and Targeted Therapy, 2020, 5, 233.	17.1	30
14	The NK cell–cancer cycle: advances and new challenges in NK cell–based immunotherapies. Nature Immunology, 2020, 21, 835-847.	14.5	243
15	Concomitant or delayed anti-TNF differentially impact on immune-related adverse events and antitumor efficacy after anti-CD40 therapy., 2020, 8, e001687.		11
16	Adoptive T Cell Therapy Targeting Different Gene Products Reveals Diverse and Context-Dependent Immune Evasion in Melanoma. Immunity, 2020, 53, 564-580.e9.	14.3	27
17	Targeting CD39 in cancer. Nature Reviews Immunology, 2020, 20, 739-755.	22.7	185
18	Targeting immune checkpoints in hematological malignancies. Journal of Hematology and Oncology, 2020, 13, 111.	17.0	66

#	Article	IF	CITATIONS
19	ACKR4 restrains antitumor immunity by regulating CCL21. Journal of Experimental Medicine, 2020, 217, .	8.5	25
20	The NK cell granule protein NKG7 regulates cytotoxic granule exocytosis and inflammation. Nature Immunology, 2020, 21, 1205-1218.	14.5	110
21	Cancerâ€killing, decoyâ€resistant interleukinâ€18. Immunology and Cell Biology, 2020, 98, 434-436.	2.3	7
22	Immunoediting of cancer metastasis by NK cells. Nature Cancer, 2020, 1, 670-671.	13.2	17
23	Innate Cancer Immunoediting. Journal of Investigative Dermatology, 2020, 140, 745-747.	0.7	2
24	Cancer immunoediting and immune dysregulation in multiple myeloma. Blood, 2020, 136, 2731-2740.	1.4	84
25	IL15 Stimulation with TIGIT Blockade Reverses CD155-mediated NK-Cell Dysfunction in Melanoma. Clinical Cancer Research, 2020, 26, 5520-5533.	7.0	88
26	Natural Killers out of Thin Air. Immunity, 2020, 52, 895-897.	14.3	1
27	Type I Interferons Suppress Anti-parasitic Immunity and Can Be Targeted to Improve Treatment of Visceral Leishmaniasis. Cell Reports, 2020, 30, 2512-2525.e9.	6.4	34
28	Control of Metastases via Myeloid CD39 and NK Cell Effector Function. Cancer Immunology Research, 2020, 8, 356-367.	3.4	60
29	Tumor CD155 Expression Is Associated with Resistance to Anti-PD1 Immunotherapy in Metastatic Melanoma. Clinical Cancer Research, 2020, 26, 3671-3681.	7.0	53
30	Targeting an adenosine-mediated "don't eat me signal―augments anti-lymphoma immunity by anti-CD20 monoclonal antibody. Leukemia, 2020, 34, 2708-2721.) 7.2	27
31	Consensus guidelines for the definition, detection and interpretation of immunogenic cell death., 2020, 8, e000337.		610
32	ASC Modulates CTL Cytotoxicity and Transplant Outcome Independent of the Inflammasome. Cancer Immunology Research, 2020, 8, 1085-1098.	3.4	6
33	The Immune System and Progression from Precursor Condition to Active Myeloma. Blood, 2020, 136, SCI5-SCI5.	1.4	0
34	Targeting CD39 in Cancer Reveals an Extracellular ATP- and Inflammasome-Driven Tumor Immunity. Cancer Discovery, 2019, 9, 1754-1773.	9.4	173
35	Blockade of ErbB2 and PD-L1 using a bispecific antibody to improve targeted anti-ErbB2 therapy. Oncolmmunology, 2019, 8, e1648171.	4.6	31
36	Sustained Type I interferon signaling as a mechanism of resistance to PD-1 blockade. Cell Research, 2019, 29, 846-861.	12.0	160

#	Article	lF	CITATIONS
37	The Promise of Neoadjuvant Immunotherapy and Surgery for Cancer Treatment. Clinical Cancer Research, 2019, 25, 5743-5751.	7.0	129
38	CD96 Is an Immune Checkpoint That Regulates CD8+ T-cell Antitumor Function. Cancer Immunology Research, 2019, 7, 559-571.	3.4	79
39	Timing of neoadjuvant immunotherapy in relation to surgery is crucial for outcome. Oncolmmunology, 2019, 8, e1581530.	4.6	69
40	Hide and seek: Plasticity of innate lymphoid cells in cancer. Seminars in Immunology, 2019, 41, 101273.	5.6	26
41	The role of NK cells and CD39 in the immunological control of tumor metastases. Oncolmmunology, 2019, 8, e1593809.	4.6	64
42	Pembrolizumab plus trastuzumab in trastuzumab-resistant, advanced, HER2-positive breast cancer (PANACEA): a single-arm, multicentre, phase 1b–2 trial. Lancet Oncology, The, 2019, 20, 371-382.	10.7	327
43	Infiltrating Myeloid Cells Drive Osteosarcoma Progression via GRM4 Regulation of IL23. Cancer Discovery, 2019, 9, 1511-1519.	9.4	26
44	Human peripheral blood DNAM-1neg NK cells are a terminally differentiated subset with limited effector functions. Blood Advances, 2019, 3, 1681-1694.	5.2	24
45	Pharmacodynamics of Pre-Operative PD1 checkpoint blockade and receptor activator of NFkB ligand (RANKL) inhibition in non-small cell lung cancer (NSCLC): study protocol for a multicentre, open-label, phase 1B/2, translational trial (POPCORN). Trials, 2019, 20, 753.	1.6	20
46	The immune checkpoint CD96 defines a distinct lymphocyte phenotype and is highly expressed on tumorâ€infiltrating TÂcells. Immunology and Cell Biology, 2019, 97, 152-164.	2.3	29
47	Batf3 ⁺ DCs and type I IFN are critical for the efficacy of neoadjuvant cancer immunotherapy. Oncolmmunology, 2019, 8, e1546068.	4.6	42
48	Cancer immunoediting and resistance to T cell-based immunotherapy. Nature Reviews Clinical Oncology, 2019, 16, 151-167.	27.6	1,093
49	Chemotherapy followed by anti-CD137 mAb immunotherapy improves disease control in a mouse myeloma model. JCI Insight, 2019, 4, .	5.0	20
50	Preoperative PD1 checkpoint blockade and receptor activator of NFkB ligand (RANKL) inhibition in non-small cell lung cancer (NSCLC) (POPCORN) Journal of Clinical Oncology, 2019, 37, TPS129-TPS129.	1.6	0
51	Rapid loss of group 1 innate lymphoid cells during blood stage Plasmodium infection. Clinical and Translational Immunology, 2018, 7, e1003.	3.8	16
52	Dysregulated IL-18 is a Key Driver of Immunosuppression and a Possible Therapeutic Target in the Multiple Myeloma Microenvironment. Cancer Cell, 2018, 33, 634-648.e5.	16.8	163
53	RANKL blockade improves efficacy of PD1-PD-L1 blockade or dual PD1-PD-L1 and CTLA4 blockade in mouse models of cancer. Oncolmmunology, 2018, 7, e1431088.	4.6	67
54	Flt-3L Expansion of Recipient CD8 $\hat{l}\pm$ + Dendritic Cells Deletes Alloreactive Donor T Cells and Represents an Alternative to Posttransplant Cyclophosphamide for the Prevention of GVHD. Clinical Cancer Research, 2018, 24, 1604-1616.	7.0	20

#	Article	IF	Citations
55	Purinergic Receptors: Novel Targets for Cancer Immunotherapy. , 2018, , 115-141.		3
56	Cancer Immunosurveillance by Natural Killer Cells and Other Innate Lymphoid Cells., 2018, , 163-180.		3
57	CD96 targeted antibodies need not block CD96-CD155 interactions to promote NK cell anti-metastatic activity. Oncolmmunology, 2018, 7, e1424677.	4.6	44
58	Deficiency of host CD96 and PD-1 or TIGIT enhances tumor immunity without significantly compromising immune homeostasis. Oncolmmunology, 2018, 7, e1445949.	4.6	46
59	Interleukin (IL)-12 and IL-23 and Their Conflicting Roles in Cancer. Cold Spring Harbor Perspectives in Biology, 2018, 10, a028530.	5.5	94
60	TNFR2/BIRC3-TRAF1 signaling pathway as a novel NK cell immune checkpoint in cancer. Oncolmmunology, 2018, 7, e1386826.	4.6	26
61	Perioperative, Spatiotemporally Coordinated Activation of T and NK Cells Prevents Recurrence of Pancreatic Cancer. Cancer Research, 2018, 78, 475-488.	0.9	61
62	A2AR Adenosine Signaling Suppresses Natural Killer Cell Maturation in the Tumor Microenvironment. Cancer Research, 2018, 78, 1003-1016.	0.9	269
63	2018 Nobel Prize in physiology or medicine. Clinical and Translational Immunology, 2018, 7, e1041.	3 . 8	41
64	Roles of the RANKL–RANK axis in antitumour immunity — implications for therapy. Nature Reviews Clinical Oncology, 2018, 15, 676-693.	27.6	77
65	Overcoming Acquired PD-1/PD-L1 Resistance with CD38 Blockade. Cancer Discovery, 2018, 8, 1066-1068.	9.4	28
66	Myeloma escape after stem cell transplantation is a consequence of T-cell exhaustion and is prevented by TIGIT blockade. Blood, 2018, 132, 1675-1688.	1.4	119
67	Natural killer receptor ligand expression on acute myeloid leukemia impacts survival and relapse after chemotherapy. Blood Advances, 2018, 2, 335-346.	5.2	47
68	Aberrant erythropoiesis fuels tumor growth. Cell Research, 2018, 28, 611-612.	12.0	3
69	An observational study of concomitant immunotherapies and denosumab in patients with advanced melanoma or lung cancer. Oncolmmunology, 2018, 7, e1480301.	4.6	48
70	TIGIT immune checkpoint blockade restores CD8+ T-cell immunity against multiple myeloma. Blood, 2018, 132, 1689-1694.	1.4	198
71	TGFÎ ² shuts the door on T cells. British Journal of Cancer, 2018, 119, 1-3.	6.4	15
72	Experimental Lung Metastases in Mice Are More Effectively Inhibited by Blockade of IL23R than IL23. Cancer Immunology Research, 2018, 6, 978-987.	3.4	10

#	Article	IF	Citations
73	CD155 loss enhances tumor suppression via combined host and tumor-intrinsic mechanisms. Journal of Clinical Investigation, 2018, 128, 2613-2625.	8.2	91
74	Bone marrow transplantation generates T cell–dependent control of myeloma in mice. Journal of Clinical Investigation, 2018, 129, 106-121.	8.2	49
75	An observational study of concomitant immunotherapies and denosumab in patients with advanced melanoma or lung cancer Journal of Clinical Oncology, 2018, 36, e21001-e21001.	1.6	0
76	Donor T Cells Maintain Myeloma-Immune Equilibrium after Autologous Stem Cell Transplantation and Concurrent Immunotherapy Promotes Cure. Blood, 2018, 132, 2031-2031.	1.4	0
77	Oncogenic-Drivers Dictate Immune Responses to Control Disease Progression in Acute Myeloid Leukaemia. Blood, 2018, 132, 904-904.	1.4	0
78	Bench to bedside: NK cells and control of metastasis. Clinical Immunology, 2017, 177, 50-59.	3.2	71
79	IFN- \hat{l}^3 is required for cytotoxic T cell-dependent cancer genome immunoediting. Nature Communications, 2017, 8, 14607.	12.8	125
80	BK Polyomavirus: Clinical Aspects, Immune Regulation, and Emerging Therapies. Clinical Microbiology Reviews, 2017, 30, 503-528.	13.6	154
81	HDAC Inhibitor Panobinostat Engages Host Innate Immune Defenses to Promote the Tumoricidal Effects of Trastuzumab in HER2+ Tumors. Cancer Research, 2017, 77, 2594-2606.	0.9	23
82	Targeting cytokine signaling checkpoint CIS activates NK cells to protect from tumor initiation and metastasis. Oncolmmunology, 2017, 6, e1267892.	4.6	53
83	<scp>TIGIT</scp> and <scp>CD</scp> 96: new checkpoint receptor targets for cancer immunotherapy. Immunological Reviews, 2017, 276, 112-120.	6.0	351
84	Multiple approaches to immunotherapy ―the new pillar of cancer treatment. Immunology and Cell Biology, 2017, 95, 323-324.	2.3	14
85	PD1 functions by inhibiting CD28â€mediated coâ€stimulation. Clinical and Translational Immunology, 2017, 6, e138.	3.8	15
86	Resistance to PD1/PDL1 checkpoint inhibition. Cancer Treatment Reviews, 2017, 52, 71-81.	7.7	437
87	Co-administration of RANKL and CTLA4 Antibodies Enhances Lymphocyte-Mediated Antitumor Immunity in Mice. Clinical Cancer Research, 2017, 23, 5789-5801.	7.0	70
88	G9a drives hypoxia-mediated gene repression for breast cancer cell survival and tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7077-7082.	7.1	105
89	Selective activation of anti-CD73 mechanisms in control of primary tumors and metastases. Oncolmmunology, 2017, 6, e1312044.	4.6	25
90	GVHD prevents NK-cell–dependent leukemia and virus-specific innate immunity. Blood, 2017, 129, 630-642.	1.4	32

#	Article	IF	Citations
91	Targeting cancerâ€related inflammation in the era of immunotherapy. Immunology and Cell Biology, 2017, 95, 325-332.	2.3	128
92	Dual-specific Chimeric Antigen Receptor T Cells and an Indirect Vaccine Eradicate a Variety of Large Solid Tumors in an Immunocompetent, Self-antigen Setting. Clinical Cancer Research, 2017, 23, 2478-2490.	7.0	95
93	Interleukin-12 from CD103+ Batf3-Dependent Dendritic Cells Required for NK-Cell Suppression of Metastasis. Cancer Immunology Research, 2017, 5, 1098-1108.	3.4	98
94	Reactive Neutrophil Responses Dependent on the Receptor Tyrosine Kinase c-MET Limit Cancer Immunotherapy. Immunity, 2017, 47, 789-802.e9.	14.3	207
95	Cytokine-driven role of Srebps in killer cell metabolism. Nature Immunology, 2017, 18, 1183-1184.	14.5	0
96	Targeting immunosuppressive adenosine in cancer. Nature Reviews Cancer, 2017, 17, 709-724.	28.4	526
97	CD73 Promotes Resistance to HER2/ErbB2 Antibody Therapy. Cancer Research, 2017, 77, 5652-5663.	0.9	90
98	Predictors of responses to immune checkpoint blockade in advanced melanoma. Nature Communications, 2017, 8, 592.	12.8	166
99	Tumor immunoevasion by the conversion of effector NK cells into type 1 innate lymphoid cells. Nature Immunology, 2017, 18, 1004-1015.	14.5	504
100	Control of Metastasis by NK Cells. Cancer Cell, 2017, 32, 135-154.	16.8	549
101	MAPK Signaling and Inflammation Link Melanoma Phenotype Switching to Induction of CD73 during Immunotherapy. Cancer Research, 2017, 77, 4697-4709.	0.9	126
101	MAPK Signaling and Inflammation Link Melanoma Phenotype Switching to Induction of CD73 during Immunotherapy. Cancer Research, 2017, 77, 4697-4709. Targeting Vascular Endothelial-Cadherin in Tumor-Associated Blood Vessels Promotes T-cell–Mediated Immunotherapy. Cancer Research, 2017, 77, 4434-4447.	0.9	126 52
	Immunotherapy. Cancer Research, 2017, 77, 4697-4709. Targeting Vascular Endothelial-Cadherin in Tumor-Associated Blood Vessels Promotes		
102	Immunotherapy. Cancer Research, 2017, 77, 4697-4709. Targeting Vascular Endothelial-Cadherin in Tumor-Associated Blood Vessels Promotes T-cell–Mediated Immunotherapy. Cancer Research, 2017, 77, 4434-4447. Targeting Adenosine in BRAF-Mutant Melanoma Reduces Tumor Growth and Metastasis. Cancer	0.9	52
102	Immunotherapy. Cancer Research, 2017, 77, 4697-4709. Targeting Vascular Endothelial-Cadherin in Tumor-Associated Blood Vessels Promotes T-cell–Mediated Immunotherapy. Cancer Research, 2017, 77, 4434-4447. Targeting Adenosine in BRAF-Mutant Melanoma Reduces Tumor Growth and Metastasis. Cancer Research, 2017, 77, 4684-4696. Th17 plasticity and transition toward a pathogenic cytokine signature are regulated by cyclosporine	0.9	52 80
102 103 104	Immunotherapy. Cancer Research, 2017, 77, 4697-4709. Targeting Vascular Endothelial-Cadherin in Tumor-Associated Blood Vessels Promotes T-cell–Mediated Immunotherapy. Cancer Research, 2017, 77, 4434-4447. Targeting Adenosine in BRAF-Mutant Melanoma Reduces Tumor Growth and Metastasis. Cancer Research, 2017, 77, 4684-4696. Th17 plasticity and transition toward a pathogenic cytokine signature are regulated by cyclosporine after allogeneic SCT. Blood Advances, 2017, 1, 341-351. NK cell heparanase controls tumor invasion and immune surveillance. Journal of Clinical	0.9	52 80 28
102 103 104	Immunotherapy. Cancer Research, 2017, 77, 4697-4709. Targeting Vascular Endothelial-Cadherin in Tumor-Associated Blood Vessels Promotes T-cellâ€"Mediated Immunotherapy. Cancer Research, 2017, 77, 4434-4447. Targeting Adenosine in BRAF-Mutant Melanoma Reduces Tumor Growth and Metastasis. Cancer Research, 2017, 77, 4684-4696. Th17 plasticity and transition toward a pathogenic cytokine signature are regulated by cyclosporine after allogeneic SCT. Blood Advances, 2017, 1, 341-351. NK cell heparanase controls tumor invasion and immune surveillance. Journal of Clinical Investigation, 2017, 127, 2777-2788. Pharmacological targeting of the transcription factor SOX18 delays breast cancer in mice. ELife, 2017,	0.9 0.9 5.2 8.2	52 80 28 85

#	Article	IF	CITATIONS
109	Co-inhibition of colony stimulating factor-1 receptor and BRAF oncogene in mouse models of BRAF ^{V600E} melanoma. Oncolmmunology, 2016, 5, e1089381.	4.6	32
110	Co-inhibition of CD73 and A2AR Adenosine Signaling Improves Anti-tumor Immune Responses. Cancer Cell, 2016, 30, 391-403.	16.8	300
111	Granzyme M has a critical role in providing innate immune protection in ulcerative colitis. Cell Death and Disease, 2016, 7, e2302-e2302.	6.3	14
112	Mouse models in oncoimmunology. Nature Reviews Cancer, 2016, 16, 759-773.	28.4	267
113	Improved Efficacy of Neoadjuvant Compared to Adjuvant Immunotherapy to Eradicate Metastatic Disease. Cancer Discovery, 2016, 6, 1382-1399.	9.4	592
114	Checkpoint Immunotherapy: Picking a Winner. Cancer Discovery, 2016, 6, 818-820.	9.4	8
115	Assessing Immune-Related Adverse Events of Efficacious Combination Immunotherapies in Preclinical Models of Cancer. Cancer Research, 2016, 76, 5288-5301.	0.9	82
116	Targeting natural killer cells in cancer immunotherapy. Nature Immunology, 2016, 17, 1025-1036.	14.5	865
117	Agonistic CD40 mAb-Driven IL12 Reverses Resistance to Anti-PD1 in a T-cell–Rich Tumor. Cancer Research, 2016, 76, 6266-6277.	0.9	74
118	Molecular Pathways: Targeting CD96 and TIGIT for Cancer Immunotherapy. Clinical Cancer Research, 2016, 22, 5183-5188.	7.0	171
119	Anti-CD137 enhances anti-CD20 therapy of systemic B-cell lymphoma with altered immune homeostasis but negligible toxicity. Oncolmmunology, 2016, 5, e1192740.	4.6	11
120	Acquired resistance to anti-PD1 therapy: checkmate to checkpoint blockade?. Genome Medicine, 2016, 8, 111.	8.2	59
121	Transforming growth factor–β and Notch ligands act as opposing environmental cues in regulating the plasticity of type 3 innate lymphoid cells. Science Signaling, 2016, 9, ra46.	3.6	88
122	Prophylactic and therapeutic adenoviral vector-based multivirus-specific T-cell immunotherapy for transplant patients. Molecular Therapy - Methods and Clinical Development, 2016, 3, 16058.	4.1	15
123	Physicochemical properties that control protein aggregation also determine whether a protein is retained or released from necrotic cells. Open Biology, 2016, 6, 160098.	3.6	7
124	Harnessing the immune system in acute myeloid leukaemia. Critical Reviews in Oncology/Hematology, 2016, 103, 62-77.	4.4	90
125	Coinfection with Human Cytomegalovirus Genetic Variants in Transplant Recipients and Its Impact on Antiviral T Cell Immune Reconstitution. Journal of Virology, 2016, 90, 7497-7507.	3.4	6
126	Mouse Models of Tumor Immunotherapy. Advances in Immunology, 2016, 130, 1-24.	2.2	30

#	Article	IF	Citations
127	Autophagy and proteasome interconnect to coordinate crossâ€presentation through MHC class I pathway in B cells. Immunology and Cell Biology, 2016, 94, 964-974.	2.3	30
128	Immune responses in multiple myeloma: role of the natural immune surveillance and potential of immunotherapies. Cellular and Molecular Life Sciences, 2016, 73, 1569-1589.	5.4	100
129	The Helix-Loop-Helix Protein ID2 Governs NK Cell Fate by Tuning Their Sensitivity to Interleukin-15. Immunity, 2016, 44, 103-115.	14.3	101
130	Acquired resistance to immunotherapy and future challenges. Nature Reviews Cancer, 2016, 16, 121-126.	28.4	353
131	Suppression of Metastases Using a New Lymphocyte Checkpoint Target for Cancer Immunotherapy. Cancer Discovery, 2016, 6, 446-459.	9.4	198
132	Improved Treatment of Breast Cancer with Anti-HER2 Therapy Requires Interleukin-21 Signaling in CD8+T Cells. Cancer Research, 2016, 76, 264-274.	0.9	21
133	Combination Anti-CTLA-4 and Anti-RANKL in Metastatic Melanoma. Journal of Clinical Oncology, 2016, 34, e104-e106.	1.6	65
134	Clinical relevance of host immunity in breast cancer: from TILs to the clinic. Nature Reviews Clinical Oncology, 2016, 13, 228-241.	27.6	679
135	TGF- \hat{I}^2 inhibits the activation and functions of NK cells by repressing the mTOR pathway. Science Signaling, 2016, 9, ra19.	3.6	453
136	Combination cancer immunotherapies tailored to the tumour microenvironment. Nature Reviews Clinical Oncology, 2016, 13, 143-158.	27.6	753
137	Regulation of Immune Cell Functions through Nectin and Nectin-Like Receptors. , 2016, , 404-414.		4
138	Blimp-1-Dependent IL-10 Production by Tr1 Cells Regulates TNF-Mediated Tissue Pathology. PLoS Pathogens, 2016, 12, e1005398.	4.7	92
139	IFNAR1-Signalling Obstructs ICOS-mediated Humoral Immunity during Non-lethal Blood-Stage Plasmodium Infection. PLoS Pathogens, 2016, 12, e1005999.	4.7	52
140	Tc17 cells are a proinflammatory, plastic lineage of pathogenic CD8+ T cells that induce GVHD without antileukemic effects. Blood, 2015, 126, 1609-1620.	1.4	98
141	Molecular and Translational Classifications of DAMPs in Immunogenic Cell Death. Frontiers in Immunology, 2015, 6, 588.	4.8	317
142	TIGIT predominantly regulates the immune response via regulatory T cells. Journal of Clinical Investigation, 2015, 125, 4053-4062.	8.2	470
143	From mice to humans: developments in cancer immunoediting. Journal of Clinical Investigation, 2015, 125, 3338-3346.	8.2	271
144	DNAM-1: would the real natural killer cell please stand up!. Oncotarget, 2015, 6, 28537-28538.	1.8	23

#	Article	IF	CITATIONS
145	Consensus nomenclature for CD8 ⁺ T cell phenotypes in cancer. Oncolmmunology, 2015, 4, e998538.	4.6	119
146	NK Cells and Cancer Immunoediting. Current Topics in Microbiology and Immunology, 2015, 395, 115-145.	1.1	76
147	Type I interferons in anticancer immunity. Nature Reviews Immunology, 2015, 15, 405-414.	22.7	929
148	CD3 ^{bright} signals on γδT cells identify ILâ€17Aâ€producing Vγ6Vδ1 ⁺ T cells. Immunology and Cell Biology, 2015, 93, 198-212.	2.3	68
149	Anticancer immunotherapy by CTLA-4 blockade: obligatory contribution of IL-2 receptors and negative prognostic impact of soluble CD25. Cell Research, 2015, 25, 208-224.	12.0	143
150	Balancing natural killer cell activation through paired receptors. Nature Reviews Immunology, 2015, 15, 243-254.	22.7	410
151	Donor colonic CD103+ dendritic cells determine the severity of acute graft-versus-host disease. Journal of Experimental Medicine, 2015, 212, 1303-1321.	8.5	85
152	A Threshold Level of Intratumor CD8+ T-cell PD1 Expression Dictates Therapeutic Response to Anti-PD1. Cancer Research, 2015, 75, 3800-3811.	0.9	201
153	CD4 ⁺ Natural Killer T Cells Potently Augment Aortic Root Atherosclerosis by Perforinand Granzyme B-Dependent Cytotoxicity. Circulation Research, 2015, 116, 245-254.	4.5	59
154	IL-12 and IL-23 cytokines: from discovery to targeted therapies for immune-mediated inflammatory diseases. Nature Medicine, 2015, 21, 719-729.	30.7	658
155	Radiotherapy Complements Immune Checkpoint Blockade. Cancer Cell, 2015, 27, 437-438.	16.8	58
156	NK cells require IL-28R for optimal in vivo activity. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2376-84.	7.1	82
157	Classifying Cancers Based on T-cell Infiltration and PD-L1. Cancer Research, 2015, 75, 2139-2145.	0.9	1,167
158	Immunosurveillance and therapy of multiple myeloma are CD226 dependent. Journal of Clinical Investigation, 2015, 125, 2077-2089.	8.2	111
159	DNAM-1 Expression Marks an Alternative Program of NK Cell Maturation. Cell Reports, 2015, 11, 85-97.	6.4	111
160	Induction of potent NK cell-dependent anti-myeloma cytotoxic T cells in response to combined mapatumumab and bortezomib. Oncolmmunology, 2015, 4, e1038011.	4.6	4
161	Toll-like receptor 3 regulates NK cell responses to cytokines and controls experimental metastasis. Oncolmmunology, 2015, 4, e1027468.	4.6	31
162	CCR2 defines in vivo development and homing of IL-23-driven GM-CSF-producing Th17 cells. Nature Communications, 2015, 6, 8644.	12.8	117

#	Article	IF	CITATIONS
163	Allergen-induced IL-6 trans-signaling activates $\hat{I}^3\hat{I}^*T$ cells to promote type 2 and type 17 airway inflammation. Journal of Allergy and Clinical Immunology, 2015, 136, 1065-1073.	2.9	73
164	Interleukin-21-Producing CD4+ T Cells Promote Type 2 Immunity to House Dust Mites. Immunity, 2015, 43, 318-330.	14.3	132
165	Natural Killer cell control ofBRAFV600Emutant melanoma during targeted therapy. Oncolmmunology, 2015, 4, e998119.	4.6	5
166	IL-17A–Producing γδT Cells Suppress Early Control of Parasite Growth by Monocytes in the Liver. Journal of Immunology, 2015, 195, 5707-5717.	0.8	25
167	IFN type III: <i>iin vivo</i> NK cell response. Oncotarget, 2015, 6, 19960-19961.	1.8	4
168	Abstract 359: CD4+ Natural Killer T Cells Promote Atherosclerosis via Cytotoxic Mechanism. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, .	2.4	0
169	Classification of current anticancer immunotherapies. Oncotarget, 2014, 5, 12472-12508.	1.8	395
170	Targeting regulatory T cells in tumor immunotherapy. Immunology and Cell Biology, 2014, 92, 473-474.	2.3	24
171	Consensus guidelines for the detection of immunogenic cell death. Oncolmmunology, 2014, 3, e955691.	4.6	686
172	Combined Anti-CD40 and Anti–IL-23 Monoclonal Antibody Therapy Effectively Suppresses Tumor Growth and Metastases. Cancer Research, 2014, 74, 2412-2421.	0.9	32
173	Targeting the IL-12/IL-23 axis. Oncolmmunology, 2014, 3, e28964.	4.6	6
174	Co-blockade of immune checkpoints and adenosine A _{2A} receptor suppresses metastasis. Oncolmmunology, 2014, 3, e958952.	4.6	22
175	The granzyme B-Serpinb9 axis controls the fate of lymphocytes after lysosomal stress. Cell Death and Differentiation, 2014, 21, 876-887.	11.2	36
176	NK cell intrinsic regulation of MIP-1α by granzyme M. Cell Death and Disease, 2014, 5, e1115-e1115.	6.3	18
177	Mice deficient in heparanase exhibit impaired dendritic cell migration and reduced airway inflammation. European Journal of Immunology, 2014, 44, 1016-1030.	2.9	38
178	The atypical chemokine receptor CCXâ€CKR regulates metastasis of mammary carcinoma via an effect on EMT. Immunology and Cell Biology, 2014, 92, 815-824.	2.3	18
179	Type I <scp>NKT</scp> â€cellâ€mediated <scp>TNF</scp> â€Î± is a positive regulator of <scp>NLRP</scp> 3 inflammasome priming. European Journal of Immunology, 2014, 44, 2111-2120.	2.9	18
180	CCL2/CCR2-Dependent Recruitment of Functional Antigen-Presenting Cells into Tumors upon Chemotherapy. Cancer Research, 2014, 74, 436-445.	0.9	118

#	Article	IF	CITATIONS
181	Cutting Edge: DNAX Accessory Molecule 1–Deficient CD8+ T Cells Display Immunological Synapse Defects That Impair Antitumor Immunity. Journal of Immunology, 2014, 192, 553-557.	0.8	39
182	Differential potency of regulatory T cell-mediated immunosuppression in kidney tumors compared to subcutaneous tumors. Oncolmmunology, 2014, 3, e963395.	4.6	8
183	Multiple Roles of Perforin in Hampering ERBB-2 (Her-2/neu) Carcinogenesis in Transgenic Male Mice. Journal of Immunology, 2014, 192, 5434-5441.	0.8	16
184	The anticancer effects of HDAC inhibitors require the immune system. Oncolmmunology, 2014, 3, e27414.	4.6	74
185	New insights into cancer immunoediting and its three component phases—elimination, equilibrium and escape. Current Opinion in Immunology, 2014, 27, 16-25.	5.5	1,163
186	Contribution of humoral immune responses to the antitumor effects mediated by anthracyclines. Cell Death and Differentiation, 2014, 21, 50-58.	11.2	29
187	The receptors CD96 and CD226 oppose each other in the regulation of natural killer cell functions. Nature Immunology, 2014, 15, 431-438.	14.5	410
188	Fas ligand–mediated immune surveillance by T cells is essential for the control of spontaneous B cell lymphomas. Nature Medicine, 2014, 20, 283-290.	30.7	79
189	Can Cancer Trigger Autoimmunity?. Science, 2014, 343, 147-148.	12.6	11
190	Improved mouse models to assess tumour immunity and irAEs after combination cancer immunotherapies. Clinical and Translational Immunology, 2014, 3, e22.	3.8	64
191	Natural Killer Cells Are Essential for the Ability of BRAF Inhibitors to Control BRAFV600E-Mutant Metastatic Melanoma. Cancer Research, 2014, 74, 7298-7308.	0.9	96
192	Peripheral natural killer cell maturation depends on the transcription factor Aiolos. EMBO Journal, 2014, 33, 2721-2734.	7.8	67
193	Cancer cell–autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nature Medicine, 2014, 20, 1301-1309.	30.7	823
194	TRAIL+ NK Cells Control CD4+ T Cell Responses during Chronic Viral Infection to Limit Autoimmunity. Immunity, 2014, 41, 646-656.	14.3	158
195	Translational biology of osteosarcoma. Nature Reviews Cancer, 2014, 14, 722-735.	28.4	939
196	Differential Requirement for Nfil3 during NK Cell Development. Journal of Immunology, 2014, 192, 2667-2676.	0.8	111
197	Targeting Cancer-Derived Adenosine:New Therapeutic Approaches. Cancer Discovery, 2014, 4, 879-888.	9.4	256
198	Innate immunodeficiency following genetic ablation of Mcl1 in natural killer cells. Nature Communications, 2014, 5, 4539.	12.8	156

#	Article	IF	CITATIONS
199	Tissues in Different Anatomical Sites Can Sculpt and Vary the Tumor Microenvironment to Affect Responses to Therapy. Molecular Therapy, 2014, 22, 18-27.	8.2	112
200	DNAMâ€1 control of natural killer cells functions through nectin and nectinâ€like proteins. Immunology and Cell Biology, 2014, 92, 237-244.	2.3	115
201	Antimetastatic Effects of Blocking PD-1 and the Adenosine A2A Receptor. Cancer Research, 2014, 74, 3652-3658.	0.9	217
202	Tumor infiltrating lymphocytes are prognostic in triple negative breast cancer and predictive for trastuzumab benefit in early breast cancer: results from the FinHER trial. Annals of Oncology, 2014, 25, 1544-1550.	1.2	1,022
203	Molecular mechanisms of natural killer cell activation in response to cellular stress. Cell Death and Differentiation, 2014, 21, 5-14.	11.2	163
204	The interaction between murine melanoma and the immune system reveals that prolonged responses predispose for autoimmunity. Oncolmmunology, 2013, 2, e23036.	4.6	12
205	Modulation of antitumour immune responses by intratumoural Stat1 expression. Immunology and Cell Biology, 2013, 91, 556-567.	2.3	11
206	A balance of interleukin-12 and -23 in cancer. Trends in Immunology, 2013, 34, 548-555.	6.8	98
207	An Intact Immune System Is Required for the Anticancer Activities of Histone Deacetylase Inhibitors. Cancer Research, 2013, 73, 7265-7276.	0.9	112
208	Making Macrophages Eat Cancer. Science, 2013, 341, 41-42.	12.6	35
209	Mechanism of Action of Conventional and Targeted Anticancer Therapies: Reinstating Immunosurveillance. Immunity, 2013, 39, 74-88.	14.3	739
210	Cancer Immunoediting. , 2013, , 85-99.		7
211	CD73 promotes anthracycline resistance and poor prognosis in triple negative breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11091-11096.	7.1	406
212	NKT cell adjuvants in therapeutic vaccines against hematological cancers. Oncolmmunology, 2013, 2, e22615.	4.6	13
213	The mTORC1 Inhibitor Everolimus Prevents and Treats $\hat{El}^{1}/_{4}$ - <i>Myc</i> Lymphoma by Restoring Oncogene-Induced Senescence. Cancer Discovery, 2013, 3, 82-95.	9.4	58
214	Anticancer Chemotherapy-Induced Intratumoral Recruitment and Differentiation of Antigen-Presenting Cells. Immunity, 2013, 38, 729-741.	14.3	572
215	The pre-metastatic niche: finding common ground. Cancer and Metastasis Reviews, 2013, 32, 449-464.	5.9	364
216	TRF2 inhibits a cell-extrinsic pathway through which natural killer cells eliminate cancer cells. Nature Cell Biology, 2013, 15, 818-828.	10.3	99

#	Article	IF	Citations
217	Persistence and Efficacy of Second Generation CAR T Cell Against the LeY Antigen in Acute Myeloid Leukemia. Molecular Therapy, 2013, 21, 2122-2129.	8.2	361
218	A _{2A} blockade enhances anti-metastatic immune responses. Oncolmmunology, 2013, 2, e26705.	4.6	17
219	BRAF-targeted therapy and immune responses to melanoma. Oncolmmunology, 2013, 2, e24462.	4.6	12
220	Myeloid TGF-Î ² Responsiveness Promotes Metastases. Cancer Discovery, 2013, 3, 846-848.	9.4	5
221	Non-classical MHC Class I molecules regulating natural killer cell function. Oncolmmunology, 2013, 2, e23336.	4.6	4
222	Contribution of Thy1 $<$ sup>+ $<$ /sup>NK cells to protective IFN- \hat{I}^3 production during $<$ i>Salmonella $<$ /i>Typhimurium infections. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2252-2257.	7.1	87
223	Hypoxia-driven immunosuppression contributes to the pre-metastatic niche. Oncolmmunology, 2013, 2, e22355.	4.6	63
224	A role for CCL2 in both tumor progression and immunosurveillance. Oncolmmunology, 2013, 2, e25474.	4.6	108
225	Tumor necrosis factor is dispensable for the success of immunogenic anticancer chemotherapy. Oncolmmunology, 2013, 2, e24786.	4.6	23
226	ILâ€21 Modulates Activation of NKT Cells in Patients with Stage IV Malignant Melanoma. Clinical and Translational Immunology, 2013, 2, e6.	3.8	19
227	Transient Foxp3 ⁺ regulatory Tâ€cell depletion enhances therapeutic anticancer vaccination targeting the immuneâ€stimulatory properties of NKT cells. Immunology and Cell Biology, 2013, 91, 105-114.	2.3	43
228	Blockade of A _{2A} receptors potently suppresses the metastasis of CD73 ⁺ tumors. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14711-14716.	7.1	306
229	Anti-PD-1 Antibody Therapy Potently Enhances the Eradication of Established Tumors By Gene-Modified T Cells. Clinical Cancer Research, 2013, 19, 5636-5646.	7.0	598
230	Targeting CD73 Enhances the Antitumor Activity of Anti-PD-1 and Anti-CTLA-4 mAbs. Clinical Cancer Research, 2013, 19, 5626-5635.	7.0	381
231	TIM3 ⁺ FOXP3 ⁺ regulatory T cells are tissue-specific promoters of T-cell dysfunction in cancer. Oncolmmunology, 2013, 2, e23849.	4.6	251
232	Promoting regulation via the inhibition of DNAM-1 after transplantation. Blood, 2013, 121, 3511-3520.	1.4	47
233	Granzyme M., 2013, , 2728-2731.		0
234	Host immunity contributes to the anti-melanoma activity of BRAF inhibitors. Journal of Clinical Investigation, 2013, 123, 1371-1381.	8.2	256

#	Article	IF	CITATIONS
235	Immune response to RB1-regulated senescence limits radiation-induced osteosarcoma formation. Journal of Clinical Investigation, 2013, 123, 5351-5360.	8.2	54
236	Host immunity contributes to the anti-melanoma activity of BRAF inhibitors. Journal of Clinical Investigation, 2013, 123, 3182-3182.	8.2	3
237	Role of γδT Cells in α-Galactosylceramide–Mediated Immunity. Journal of Immunology, 2012, 188, 3928-3939.	0.8	44
238	Radiotherapy Increases the Permissiveness of Established Mammary Tumors to Rejection by Immunomodulatory Antibodies. Cancer Research, 2012, 72, 3163-3174.	0.9	248
239	Primary Tumor Hypoxia Recruits CD11b+/Ly6Cmed/Ly6G+ Immune Suppressor Cells and Compromises NK Cell Cytotoxicity in the Premetastatic Niche. Cancer Research, 2012, 72, 3906-3911.	0.9	316
240	Oncolytic Virus and Anti–4-1BB Combination Therapy Elicits Strong Antitumor Immunity against Established Cancer. Cancer Research, 2012, 72, 1651-1660.	0.9	94
241	Immunotherapeutic strategies as adjuncts to local radiotherapy. Immunotherapy, 2012, 4, 129-131.	2.0	1
242	Enhancing the antitumor effects of radiotherapy with combinations of immunostimulatory antibodies. Oncolmmunology, 2012, 1, 1629-1631.	4.6	13
243	Studying the role of the immune system on the antitumor activity of a Hedgehog inhibitor against murine osteosarcoma. Oncolmmunology, 2012, 1, 1313-1322.	4.6	11
244	The combination of histone deacetylase inhibitors with immune-stimulating antibodies has potent anti-cancer effects. Oncolmmunology, 2012 , 1 , 377 - 379 .	4.6	14
245	Opposing Roles for IL-23 and IL-12 in Maintaining Occult Cancer in an Equilibrium State. Cancer Research, 2012, 72, 3987-3996.	0.9	92
246	NLRP3 Suppresses NK Cell–Mediated Responses to Carcinogen-Induced Tumors and Metastases. Cancer Research, 2012, 72, 5721-5732.	0.9	159
247	NKT cell adjuvant-based tumor vaccine for treatment of myc oncogene-driven mouse B-cell lymphoma. Blood, 2012, 120, 3019-3029.	1.4	67
248	Sensitivity of a novel model of mammary cancer stem cell-like cells to TNF-related death pathways. Cancer Immunology, Immunotherapy, 2012, 61, 1255-1268.	4.2	25
249	Death receptor-induced apoptosis signalling - essential guardian against autoimmune disease. Arthritis Research and Therapy, 2012, 14, .	3.5	O
250	CD73-Deficient Mice Are Resistant to Carcinogenesis. Cancer Research, 2012, 72, 2190-2196.	0.9	178
251	An Immunosurveillance Mechanism Controls Cancer Cell Ploidy. Science, 2012, 337, 1678-1684.	12.6	367
252	CD73: a potent suppressor of antitumor immune responses. Trends in Immunology, 2012, 33, 231-237.	6.8	310

#	Article	IF	CITATIONS
253	Receptors that interact with nectin and nectin-like proteins in the immunosurveillance and immunotherapy of cancer. Current Opinion in Immunology, 2012, 24, 246-251.	5 . 5	88
254	Liberating tumor immunity. Current Opinion in Immunology, 2012, 24, 204-206.	5.5	1
255	Cancer immunoediting by the innate immune system in the absence of adaptive immunity. Journal of Experimental Medicine, 2012, 209, 1869-1882.	8.5	281
256	Both <scp>IFN</scp> â€Ĵ³ and <scp>IL</scp> â€Ĵ 7 are required for the development of severe autoimmune gastritis. European Journal of Immunology, 2012, 42, 2574-2583.	2.9	21
257	NLRP3 promotes inflammationâ€induced skin cancer but is dispensable for asbestosâ€induced mesothelioma. Immunology and Cell Biology, 2012, 90, 983-986.	2.3	74
258	Silencing of Irf7 pathways in breast cancer cells promotes bone metastasis through immune escape. Nature Medicine, 2012, 18, 1224-1231.	30.7	406
259	Recognition of the nonclassical MHC class I molecule H2-M3 by the receptor Ly49A regulates the licensing and activation of NK cells. Nature Immunology, 2012, 13, 1171-1177.	14.5	49
260	Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature, 2012, 482, 400-404.	27.8	1,075
261	Inflammation and immune surveillance in cancer. Seminars in Cancer Biology, 2012, 22, 23-32.	9.6	179
262	Therapeutic Approaches Utilising NKT Cells. , 2012, , 111-128.		2
263	Abstract 526: Cancer immunoediting by the innate immune system in the absence of adaptive immunity. Cancer Research, 2012, 72, 526-526.	0.9	2
264	Promoting Regulation Via the Inhibition of DNAM-1 After Transplantation. Blood, 2012, 120, 338-338.	1.4	1
265	Homeostatic defects in interleukin 18â€deficient mice contribute to protection against the lethal effects of endotoxin. Immunology and Cell Biology, 2011, 89, 739-746.	2.3	17
266	Antibody responses to glycolipidâ€borne carbohydrates require CD4 ⁺ T cells but not CD1 or NKT cells. Immunology and Cell Biology, 2011, 89, 502-510.	2.3	13
267	Contribution of IL-17–producing γδT cells to the efficacy of anticancer chemotherapy. Journal of Experimental Medicine, 2011, 208, 491-503.	8.5	303
268	A semi-invariant Vα10+ T cell antigen receptor defines a population of natural killer T cells with distinct glycolipid antigen–recognition properties. Nature Immunology, 2011, 12, 616-623.	14.5	97
269	The Adjuvant Effects of Antibodies. Science, 2011, 333, 944-945.	12.6	24
270	The immunostimulatory effect of lenalidomide on NK-cell function is profoundly inhibited by concurrent dexamethasone therapy. Blood, 2011, 117, 1605-1613.	1.4	152

#	Article	IF	Citations
271	A role for Blimp1 in the transcriptional network controlling natural killer cell maturation. Blood, 2011, 117, 1869-1879.	1.4	134
272	Response: dexamethasone dose alters expression of NK activating receptors in vivo. Blood, 2011, 118, 6466-6468.	1.4	4
273	Presumed guilty: natural killer T cell defects and human disease. Nature Reviews Immunology, 2011, 11, 131-142.	22.7	324
274	Activating and inhibitory receptors of natural killer cells. Immunology and Cell Biology, 2011, 89, 216-224.	2.3	426
275	Stable IL-10: A New Therapeutic that Promotes Tumor Immunity. Cancer Cell, 2011, 20, 691-693.	16.8	31
276	Natural Innate and Adaptive Immunity to Cancer. Annual Review of Immunology, 2011, 29, 235-271.	21.8	1,691
277	Cancer Immunoediting: Integrating Immunity's Roles in Cancer Suppression and Promotion. Science, 2011, 331, 1565-1570.	12.6	4,987
278	Improving cancer immunotherapy by targeting tumor-induced immune suppression. Cancer and Metastasis Reviews, 2011, 30, 125-140.	5.9	127
279	Adoptive immunotherapy combined with intratumoral TLR agonist delivery eradicates established melanoma in mice. Cancer Immunology, Immunotherapy, 2011, 60, 671-683.	4.2	74
280	Antitumor activities and onâ€ŧarget toxicities mediated by a TRAIL receptor agonist following cotreatment with panobinostat. International Journal of Cancer, 2011, 128, 2735-2747.	5.1	11
281	Alloreactive natural killer cells in hematopoietic stem cell transplantation. Leukemia Research, 2011, 35, 14-21.	0.8	21
282	Contribution of IL-17 \hat{a} "producing $\hat{l}^3\hat{l}$ " T cells to the efficacy of anticancer chemotherapy. Journal of Experimental Medicine, 2011, 208, 869-869.	8.5	6
283	IFN- \hat{l}^3 production by lung NK cells is critical for the natural resistance to pulmonary metastasis of B16 melanoma in mice. Journal of Leukocyte Biology, 2011, 90, 777-785.	3.3	78
284	Prospects for TIM3-Targeted Antitumor Immunotherapy. Cancer Research, 2011, 71, 6567-6571.	0.9	111
285	Eradication of solid tumors using histone deacetylase inhibitors combined with immune-stimulating antibodies. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4141-4146.	7.1	98
286	Anti-TIM3 Antibody Promotes T Cell IFN-γ–Mediated Antitumor Immunity and Suppresses Established Tumors. Cancer Research, 2011, 71, 3540-3551.	0.9	489
287	CD73-Deficient Mice Have Increased Antitumor Immunity and Are Resistant to Experimental Metastasis. Cancer Research, 2011, 71, 2892-2900.	0.9	353
288	Anti–ErbB-2 mAb therapy requires type I and II interferons and synergizes with anti–PD-1 or anti-CD137 mAb therapy. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7142-7147.	7.1	413

#	Article	IF	CITATIONS
289	Granzyme B Expression by CD8+ T Cells Is Required for the Development of Experimental Cerebral Malaria. Journal of Immunology, 2011, 186, 6148-6156.	0.8	178
290	Pivotal Role of Innate and Adaptive Immunity in Anthracycline Chemotherapy of Established Tumors. Cancer Research, 2011, 71, 4809-4820.	0.9	302
291	Anti-IL-23 Monoclonal Antibody Synergizes in Combination with Targeted Therapies or IL-2 to Suppress Tumor Growth and Metastases. Cancer Research, 2011, 71, 2077-2086.	0.9	46
292	Antibody responses to glycolipidâ€borne carbohydrates require CD4 ⁺ T cells but not CD1 or NKT cells. Immunology and Cell Biology, 2011, 89, 574-574.	2.3	0
293	Autologous Peripheral Blood T Lymphocytes Transduced with An Anti LewisY Chimeric Receptor Gene Persist In Patients with Lewisy Positive Acute Myeloid Leukaemia and Show Changes In Functional Polarization After Adoptive Transfer,. Blood, 2011, 118, 4180-4180.	1.4	0
294	Does IL-17 suppress tumor growth?. Blood, 2010, 115, 2554-2555.	1.4	29
295	Stem cell mobilization with G-CSF induces type 17 differentiation and promotes scleroderma. Blood, 2010, 116, 819-828.	1.4	139
296	Characterizing the anti-tumor function of adoptively transferred NK cells in vivo. Cancer Immunology, Immunotherapy, 2010, 59, 1235-1246.	4.2	23
297	Her 2 in 1. Cancer Cell, 2010, 18, 101-102.	16.8	7
298	Redundancy in the immune system restricts the spread of HSV-1 in the central nervous system (CNS) of C57BL/6 mice. Virology, 2010, 400, 248-258.	2.4	31
299	Extracellular adenosine triphosphate and adenosine in cancer. Oncogene, 2010, 29, 5346-5358.	5.9	489
300	Gene-modified T cells as immunotherapy for multiple myeloma and acute myeloid leukemia expressing the Lewis Y antigen. Gene Therapy, 2010, 17, 678-686.	4.5	105
301	Ex vivo culture of chimeric antigen receptor T cells generates functional CD8+ T cells with effector and central memory-like phenotype. Gene Therapy, 2010, 17, 1105-1116.	4.5	38
302	A potential role for RAGâ€1 in NK cell development revealed by analysis of NK cells during ontogeny. Immunology and Cell Biology, 2010, 88, 107-116.	2.3	39
303	Mechanism of action of immunomodulatory drugs (IMiDS) in multiple myeloma. Leukemia, 2010, 24, 22-32.	7.2	505
304	A novel axis of innate immunity in cancer. Nature Immunology, 2010, 11, 981-982.	14.5	13
305	Functional dissection of the granzyme family: cell death and inflammation. Immunological Reviews, 2010, 235, 73-92.	6.0	128
306	Influenza A Infection Enhances Cross-Priming of CD8+T Cells to Cell-Associated Antigens in a TLR7- and Type I IFN-Dependent Fashion. Journal of Immunology, 2010, 185, 6013-6022.	0.8	34

#	Article	IF	Citations
307	Multiple Antitumor Mechanisms Downstream of Prophylactic Regulatory T-Cell Depletion. Cancer Research, 2010, 70, 2665-2674.	0.9	67
308	Innate immunity defines the capacity of antiviral T cells to limit persistent infection. Journal of Experimental Medicine, 2010, 207, 1333-1343.	8.5	190
309	IL-21 regulates germinal center B cell differentiation and proliferation through a B cell–intrinsic mechanism. Journal of Experimental Medicine, 2010, 207, 365-378.	8.5	661
310	Conditional Regulatory T-Cell Depletion Releases Adaptive Immunity Preventing Carcinogenesis and Suppressing Established Tumor Growth. Cancer Research, 2010, 70, 7800-7809.	0.9	165
311	IL-23 suppresses innate immune response independently of IL-17A during carcinogenesis and metastasis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8328-8333.	7.1	116
312	Asymmetric Cell Division of T Cells upon Antigen Presentation Uses Multiple Conserved Mechanisms. Journal of Immunology, 2010, 185, 367-375.	0.8	117
313	A Role for Granzyme M in TLR4-Driven Inflammation and Endotoxicosis. Journal of Immunology, 2010, 185, 1794-1803.	0.8	77
314	Biology and Clinical Observations of Regulatory T Cells in Cancer Immunology. Current Topics in Microbiology and Immunology, 2010, 344, 61-95.	1.1	32
315	DNAM-1/CD155 Interactions Promote Cytokine and NK Cell-Mediated Suppression of Poorly Immunogenic Melanoma Metastases. Journal of Immunology, 2010, 184, 902-911.	0.8	158
316	The Interactions of Multiple Cytokines Control NK Cell Maturation. Journal of Immunology, 2010, 185, 6679-6688.	0.8	110
317	Combination Therapy of Established Tumors by Antibodies Targeting Immune Activating and Suppressing Molecules. Journal of Immunology, 2010, 184, 5493-5501.	0.8	76
318	Tumor Cell Death and ATP Release Prime Dendritic Cells and Efficient Anticancer Immunity. Cancer Research, 2010, 70, 855-858.	0.9	326
319	Anti-CD73 antibody therapy inhibits breast tumor growth and metastasis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1547-1552.	7.1	492
320	CD11c+ Dendritic Cells and B Cells Contribute to the Tumoricidal Activity of Anti-DR5 Antibody Therapy in Established Tumors. Journal of Immunology, 2010, 185, 532-541.	0.8	49
321	Tumor Ablation by Gene-Modified T Cells in the Absence of Autoimmunity. Cancer Research, 2010, 70, 9591-9598.	0.9	49
322	IL-21 acts directly on B cells to regulate Bcl-6 expression and germinal center responses. Journal of Experimental Medicine, 2010, 207, 353-363.	8.5	659
323	Multiple functions of CXCL12 in a syngeneic model of breast cancer. Molecular Cancer, 2010, 9, 250.	19.2	60
324	Three agonist antibodies in combination with high-dose IL-2 eradicate orthotopic kidney cancer in mice. Journal of Translational Medicine, 2010, 8, 42.	4.4	24

#	Article	IF	CITATIONS
325	SnapShot: Extrinsic Apoptosis Pathways. Cell, 2010, 143, 1192-1192.e2.	28.9	68
326	Chemotherapy and radiotherapy: Cryptic anticancer vaccines. Seminars in Immunology, 2010, 22, 113-124.	5.6	183
327	Selective Depletion of Foxp3+ Regulatory T Cells Improves Effective Therapeutic Vaccination against Established Melanoma. Cancer Research, 2010, 70, 7788-7799.	0.9	228
328	Subset Analysis of Human and Mouse Mature NK Cells. Methods in Molecular Biology, 2010, 612, 27-38.	0.9	26
329	Anti-Tumor Activity of Genetically Redirected T Cells Against Orthotopic Kidney Cancer in Mice~!2010-01-06~!2010-03-24~!2010-05-13~!. The Open Gene Therapy Journal, 2010, 3, 1-7.	1.2	0
330	Age-dependent, polyclonal hyperactivation of T cells is reduced in TNF-negative <i>gld/gld</i> mice. Journal of Leukocyte Biology, 2009, 85, 108-116.	3.3	7
331	NKG2A Inhibits Invariant NKT Cell Activation in Hepatic Injury. Journal of Immunology, 2009, 182, 250-258.	0.8	39
332	Locally Administered TLR7 Agonists Drive Systemic Antitumor Immune Responses That Are Enhanced by Anti-CD40 Immunotherapy. Journal of Immunology, 2009, 182, 5217-5224.	0.8	86
333	CD1d Activation and Blockade: A New Antitumor Strategy. Journal of Immunology, 2009, 182, 3366-3371.	0.8	34
334	Perforin-mediated suppression of B-cell lymphoma. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2723-2728.	7.1	40
335	Toll-Like Receptor Triggering and T-Cell Costimulation Induce Potent Antitumor Immunity in Mice. Clinical Cancer Research, 2009, 15, 7624-7633.	7.0	22
336	Chemokine–chemokine receptors in cancer immunotherapy. Immunotherapy, 2009, 1, 109-127.	2.0	24
337	CD1d-Based Combination Therapy Eradicates Established Tumors in Mice. Journal of Immunology, 2009, 183, 1911-1920.	0.8	28
338	Endogenous IL-21 Restricts CD8+ T Cell Expansion and Is not Required for Tumor Immunity. Journal of Immunology, 2009, 183, 7326-7336.	0.8	18
339	SOCS-1 Binding to Tyrosine 441 of IFN- \hat{l}^3 Receptor Subunit 1 Contributes to the Attenuation of IFN- \hat{l}^3 Signaling In Vivo. Journal of Immunology, 2009, 183, 4537-4544.	0.8	25
340	Fatal Hepatitis Mediated by Tumor Necrosis Factor TNF \hat{l} ± Requires Caspase-8 and Involves the BH3-Only Proteins Bid and Bim. Immunity, 2009, 30, 56-66.	14.3	128
341	The roles of interferonâ€Î³ and perforin in antiviral immunity in mice that differ in genetically determined NKâ€cellâ€mediated antiviral activity. Immunology and Cell Biology, 2009, 87, 559-566.	2.3	51
342	Membrane-bound Fas ligand only is essential for Fas-induced apoptosis. Nature, 2009, 461, 659-663.	27.8	348

#	Article	IF	CITATIONS
343	Induction of natural killer T cell–dependent alloreactivity by administration of granulocyte colony–stimulating factor after bone marrow transplantation. Nature Medicine, 2009, 15, 436-441.	30.7	64
344	Activation of the NLRP3 inflammasome in dendritic cells induces IL-1β–dependent adaptive immunity against tumors. Nature Medicine, 2009, 15, 1170-1178.	30.7	1,614
345	Differential Recognition of CD1d- $\hat{l}\pm$ -Galactosyl Ceramide by the V \hat{l}^2 8.2 and V \hat{l}^2 7 Semi-invariant NKT T Cell Receptors. Immunity, 2009, 31, 47-59.	14.3	198
346	A New Therapeutic Target for Leukemia Comes to the Surface. Cell, 2009, 138, 226-228.	28.9	12
347	The Lewis-Y Carbohydrate Antigen is Expressed by Many Human Tumors and Can Serve as a Target for Genetically Redirected T cells Despite the Presence of Soluble Antigen in Serum. Journal of Immunotherapy, 2009, 32, 292-301.	2.4	56
348	Type I natural killer T cells suppress tumors caused by p53 loss in mice. Blood, 2009, 113, 6382-6385.	1.4	99
349	Invariant natural killer T cell–natural killer cell interactions dictate transplantation outcome after α-galactosylceramide administration. Blood, 2009, 113, 5999-6010.	1.4	28
350	Interleukin-21 and Cancer Therapy. , 2009, , 43-59.		2
351	Cyclophosphamide Chemotherapy Sensitizes Tumor Cells to TRAIL-Dependent CD8 T Cell-Mediated Immune Attack Resulting in Suppression of Tumor Growth. PLoS ONE, 2009, 4, e6982.	2.5	82
352	Can NK cells be a therapeutic target in human diseases?. European Journal of Immunology, 2008, 38, 2964-2968.	2.9	28
353	Immunogenic anti-cancer chemotherapy as an emerging concept. Current Opinion in Immunology, 2008, 20, 545-557.	5.5	101
354	Dihydrofuro [3,4 <i>-c</i>) pyridinones as Inhibitors of the Cytolytic Effects of the Pore-Forming Glycoprotein Perforin. Journal of Medicinal Chemistry, 2008, 51, 7614-7624.	6.4	41
355	Cancer vaccines for established cancer: how to make them better?. Immunological Reviews, 2008, 222, 242-255.	6.0	43
356	Absence of retroviral vector-mediated transformation of gene-modified T cells after long-term engraftment in mice. Gene Therapy, 2008, 15, 1056-1066.	4.5	25
357	Stress gets under your skin. Nature Immunology, 2008, 9, 119-120.	14.5	1
358	The TRAIL apoptotic pathway in cancer onset, progression and therapy. Nature Reviews Cancer, 2008, 8, 782-798.	28.4	788
359	Interleukin 21: combination strategies for cancer therapy. Nature Reviews Drug Discovery, 2008, 7, 231-240.	46.4	88
360	Immune-mediated dormancy: an equilibrium with cancer. Journal of Leukocyte Biology, 2008, 84, 988-993.	3.3	253

#	Article	IF	Citations
361	Application of CD27 as a marker for distinguishing human NK cell subsets. International Immunology, 2008, 20, 625-630.	4.0	73
362	Combination therapy of established cancer using a histone deacetylase inhibitor and a TRAIL receptor agonist. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11317-11322.	7.1	129
363	NK cells and NKT cells collaborate in host protection from methylcholanthrene-induced fibrosarcoma. International Immunology, 2008, 20, 631-631.	4.0	97
364	DNAM-1 promotes activation of cytotoxic lymphocytes by nonprofessional antigen-presenting cells and tumors. Journal of Experimental Medicine, 2008, 205, 2965-2973.	8.5	302
365	Adoptive Transfer of Gene-Modified Primary NK Cells Can Specifically Inhibit Tumor Progression In Vivo. Journal of Immunology, 2008, 181, 3449-3455.	0.8	62
366	Interleukin 21 Enhances Antibody-Mediated Tumor Rejection. Cancer Research, 2008, 68, 3019-3025.	0.9	24
367	Treating Metastatic Solid Tumors With Bortezomib and a Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Receptor Agonist Antibody. Journal of the National Cancer Institute, 2008, 100, 649-662.	6.3	83
368	Demonstration of inflammation-induced cancer and cancer immunoediting during primary tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 652-656.	7.1	270
369	IFN-Î ³ -Dependent Recruitment of Mature CD27high NK Cells to Lymph Nodes Primed by Dendritic Cells. Journal of Immunology, 2008, 181, 5323-5330.	0.8	55
370	Cutting Edge: IL-21 Is Not Essential for Th17 Differentiation or Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2008, 180, 7097-7101.	0.8	154
371	Osteoclast Inhibitory Lectin, an Immune Cell Product That Is Required for Normal Bone Physiology in Vivo. Journal of Biological Chemistry, 2008, 283, 30850-30860.	3.4	28
372	Antibodies targeted to TRAIL receptor-2 and ErbB-2 synergize in vivo and induce an antitumor immune response. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16254-16259.	7.1	45
373	Death receptor 5 mediated-apoptosis contributes to cholestatic liver disease. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10895-10900.	7.1	124
374	Distinct receptor repertoire formation in mouse NK cell subsets regulated by MHC class I expression. Journal of Leukocyte Biology, 2008, 83, 106-111.	3.3	19
375	No requirement for TRAIL in intrathymic negative selection. International Immunology, 2008, 20, 267-276.	4.0	10
376	The Early Kinetics of Cytomegalovirus-Specific CD8 ⁺ T-Cell Responses Are Not Affected by Antigen Load or the Absence of Perforin or Gamma Interferon. Journal of Virology, 2008, 82, 4931-4937.	3.4	19
377	Activation of Invariant NKT Cells Exacerbates Experimental Visceral Leishmaniasis. PLoS Pathogens, 2008, 4, e1000028.	4.7	53
378	Diverse cytokine production by NKT cell subsets and identification of an IL-17–producing CD4 ⟨sup⟩â^'⟨ sup⟩ NK1.1 ⟨sup⟩â^'⟨ sup⟩ NKT cell population. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11287-11292.	7.1	410

#	Article	IF	CITATIONS
379	Clarification of data used in three studies on MCA-induction of sarcoma in mice. Blood, 2008, 111, 4419-4419.	1.4	4
380	Induction of Invariant NKT Cell-Dependent Alloreactivity by Administration of G-CSF after Bone Marrow Transplantation. Blood, 2008, 112, 3499-3499.	1.4	0
381	Targeting Lewis Y-Positive Multiple Myeloma and Acute Myeloid Leukemia with Gene-Modified T Cells Demonstrating Memory Phenotype. Blood, 2008, 112, 3900-3900.	1.4	7
382	Interleukin-21 Signaling: Functions in Cancer and Autoimmunity. Clinical Cancer Research, 2007, 13, 6926-6932.	7.0	77
383	NK Cell Maturation and Peripheral Homeostasis Is Associated with KLRG1 Up-Regulation. Journal of Immunology, 2007, 178, 4764-4770.	0.8	272
384	IL-21 Is Produced by NKT Cells and Modulates NKT Cell Activation and Cytokine Production. Journal of Immunology, 2007, 178, 2827-2834.	0.8	338
385	Peripheral NK1.1â^' NKT Cells Are Mature and Functionally Distinct from Their Thymic Counterparts. Journal of Immunology, 2007, 179, 6630-6637.	0.8	60
386	Type I IFN Contributes to NK Cell Homeostasis, Activation, and Antitumor Function. Journal of Immunology, 2007, 178, 7540-7549.	0.8	261
387	Host Perforin Reduces Tumor Number but Does Not Increase Survival in Oncogene-Driven Mammary Adenocarcinoma. Cancer Research, 2007, 67, 5454-5460.	0.9	45
388	Plasmodium Strain Determines Dendritic Cell Function Essential for Survival from Malaria. PLoS Pathogens, 2007, 3, e96.	4.7	72
389	BAFF and MyD88 signals promote a lupuslike disease independent of T cells. Journal of Experimental Medicine, 2007, 204, 1959-1971.	8.5	332
390	Sustained Antigen-Specific Antitumor Recall Response Mediated by Gene-Modified CD4+ T Helper-1 and CD8+ T Cells. Cancer Research, 2007, 67, 11428-11437.	0.9	59
391	Regulation of Carcinogenesis by IL-5 and CCL11: A Potential Role for Eosinophils in Tumor Immune Surveillance. Journal of Immunology, 2007, 178, 4222-4229.	0.8	176
392	Putative IKDCs are functionally and developmentally similar to natural killer cells, but not to dendritic cells. Journal of Experimental Medicine, 2007, 204, 2579-2590.	8.5	108
393	Combined Natural Killer T-Cell–Based Immunotherapy Eradicates Established Tumors in Mice. Cancer Research, 2007, 67, 7495-7504.	0.9	64
394	Cancer: Novel therapeutic strategies that exploit the TNF-related apoptosis-inducing ligand (TRAIL)/TRAIL receptor pathway. International Journal of Biochemistry and Cell Biology, 2007, 39, 280-286.	2.8	72
395	Analysis of the apoptotic and therapeutic activities of histone deacetylase inhibitors by using a mouse model of B cell lymphoma. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8071-8076.	7.1	195
396	Patients with multiple myeloma treated with thalidomide: evaluation of clinical parameters, cytokines, angiogenic markers, mast cells and marrow CD57+ cytotoxic T cells as predictors of outcome. Haematologica, 2007, 92, 1075-1082.	3 . 5	36

#	Article	IF	CITATIONS
397	Immune surveillance of tumors. Journal of Clinical Investigation, 2007, 117, 1137-1146.	8.2	1,198
398	Apoptosis induced by the lymphocyte effector molecule perforin. Current Opinion in Immunology, 2007, 19, 339-347.	5 . 5	123
399	Targeting death-inducing receptors in cancer therapy. Oncogene, 2007, 26, 3745-3757.	5.9	178
400	Interleukin 15–mediated survival of natural killer cells is determined by interactions among Bim, Noxa and Mcl-1. Nature Immunology, 2007, 8, 856-863.	14.5	231
401	Critical link between TRAIL and CCL20 for the activation of TH2 cells and the expression of allergic airway disease. Nature Medicine, 2007, 13, 1308-1315.	30.7	112
402	Antitumor activity of dual-specific T cells and influenza virus. Cancer Gene Therapy, 2007, 14, 499-508.	4.6	24
403	Adaptive immunity maintains occult cancer in an equilibrium state. Nature, 2007, 450, 903-907.	27.8	1,204
404	Calreticulin exposure increases cancer immunogenicity. Nature Biotechnology, 2007, 25, 192-193.	17.5	71
405	Combination antibody-based cancer immunotherapy. Cancer Science, 2007, 98, 1297-1302.	3.9	18
406	From cancer immunosurveillance to cancer immunotherapy. Immunological Reviews, 2007, 220, 82-101.	6.0	78
407	Innate Tumor Immune Surveillance. Advances in Experimental Medicine and Biology, 2007, 590, 103-111.	1.6	13
408	CD1-Restricted T Cells and Tumor Immunity. , 2007, 314, 293-323.		66
409	NK Cell-Based Cancer Immunotherapy. Drug News and Perspectives, 2007, 20, 155.	1.5	18
410	Experimental Models of Cytokines and Cancer Prevention., 2007,, 211-230.		0
411	Innate Immune Recognition and Suppression of Tumors. Advances in Cancer Research, 2006, 95, 293-322.	5.0	55
412	A structural basis for selection and cross-species reactivity of the semi-invariant NKT cell receptor in CD1d/glycolipid recognition. Journal of Experimental Medicine, 2006, 203, 661-673.	8.5	105
413	Cancer Immunosurveillance and Immunoediting: The Roles of Immunity in Suppressing Tumor Development and Shaping Tumor Immunogenicity. Advances in Immunology, 2006, 90, 1-50.	2.2	689
414	Perforin and Granzymes Have Distinct Roles in Defensive Immunity and Immunopathology. Immunity, 2006, 25, 835-848.	14.3	134

#	Article	IF	CITATIONS
415	NKG2D and cytotoxic effector function in tumor immune surveillance. Seminars in Immunology, 2006, 18, 176-185.	5. 6	78
416	NKT cells are not critical for HSVâ€1 disease resolution. Immunology and Cell Biology, 2006, 84, 13-19.	2.3	37
417	TNFâ€related apoptosisâ€inducing ligand as a therapeutic agent in autoimmunity and cancer. Immunology and Cell Biology, 2006, 84, 87-98.	2.3	83
418	Functional subsets of mouse natural killer cells. Immunological Reviews, 2006, 214, 47-55.	6.0	222
419	IL-7 and the thymus dictate the NK cell 'labor market'. Nature Immunology, 2006, 7, 1134-1136.	14.5	8
420	Eradication of established tumors in mice by a combination antibody-based therapy. Nature Medicine, 2006, 12, 693-698.	30.7	248
421	Perforin-mediated target-cell death and immune homeostasis. Nature Reviews Immunology, 2006, 6, 940-952.	22.7	494
422	NK cells contribute to the early clearance of HSV-1 from the lung but cannot control replication in the central nervous system following intranasal infection. European Journal of Immunology, 2006, 36, 897-905.	2.9	45
423	Imatinib Mesylate â€" Uncovering a Fast Track to Adaptive Immunity. New England Journal of Medicine, 2006, 354, 2282-2284.	27.0	17
424	CD27 Dissects Mature NK Cells into Two Subsets with Distinct Responsiveness and Migratory Capacity. Journal of Immunology, 2006, 176, 1517-1524.	0.8	650
425	CD4+CD25+ T Regulatory Cells Suppress NK Cell-Mediated Immunotherapy of Cancer. Journal of Immunology, 2006, 176, 1582-1587.	0.8	362
426	Long-Term Retention of Mature NK1.1+ NKT Cells in the Thymus. Journal of Immunology, 2006, 176, 4059-4065.	0.8	95
427	IL-21 Enhances Tumor-Specific CTL Induction by Anti-DR5 Antibody Therapy. Journal of Immunology, 2006, 176, 6347-6355.	0.8	38
428	NK Cells Use NKG2D to Recognize a Mouse Renal Cancer (Renca), yet Require Intercellular Adhesion Molecule-1 Expression on the Tumor Cells for Optimal Perforin-Dependent Effector Function. Journal of Immunology, 2006, 177, 2575-2583.	0.8	19
429	Adoptive Transfer of Chimeric Fc $\hat{l}\mu$ RI Receptor Gene-Modified Human T Cells for Cancer Immunotherapy. Human Gene Therapy, 2006, 17, 1134-1143.	2.7	23
430	Antigen Challenge Inhibits Thymic Emigration. Journal of Immunology, 2006, 176, 4553-4561.	0.8	15
431	Adoptive Transfer of Chimeric Fc?RI Gene-Modified Human T Cells for Cancer Immunotherapy. Human Gene Therapy, 2006, .	2.7	0
432	TRAIL identifies immature natural killer cells in newborn mice and adult mouse liver. Blood, 2005, 105, 2082-2089.	1.4	237

#	Article	IF	Citations
433	IFN-Â-mediated negative feedback regulation of NKT-cell function by CD94/NKG2. Blood, 2005, 106, 184-192.	1.4	56
434	Adoptive transfer of gene-engineered CD4+ helper T cells induces potent primary and secondary tumor rejection. Blood, 2005, 106, 2995-3003.	1.4	100
435	Immune surveillance of lymphoma in humans?. Blood, 2005, 105, 4159-4160.	1.4	2
436	Working with NKT cells â€" pitfalls and practicalities. Current Opinion in Immunology, 2005, 17, 448-454.	5 . 5	40
437	Are We Really on the Right TRAIL?. Immunologic Research, 2005, 31, 161-164.	2.9	2
438	TNFâ€related apoptosisâ€inducing ligand (TRAIL)/Apo2L suppresses experimental autoimmune encephalomyelitis in mice. Immunology and Cell Biology, 2005, 83, 511-519.	2.3	61
439	Type I interferon and cancer immunoediting. Nature Immunology, 2005, 6, 646-648.	14.5	24
440	Close encounters of different kinds: Dendritic cells and NK cells take centre stage. Nature Reviews Immunology, 2005, 5, 112-124.	22.7	493
441	Supernatural T cells: genetic modification of T cells for cancer therapy. Nature Reviews Immunology, 2005, 5, 928-940.	22.7	137
442	KHYG-1, a model for the study of enhanced natural killer cell cytotoxicity. Experimental Hematology, 2005, 33, 1160-1171.	0.4	91
443	Frizzled-7 receptor ectodomain expression in a colon cancer cell line induces morphological change and attenuates tumor growth. Differentiation, 2005, 73, 142-153.	1.9	52
444	Limited correlation between human thymus and blood NKT?cell content revealed by an ontogeny study of paired tissue samples. European Journal of Immunology, 2005, 35, 1399-1407.	2.9	100
445	Differential lymphotoxin-? and interferon gamma signaling during mouse liver regeneration induced by chronic and acute injury. Hepatology, 2005, 41, 327-335.	7.3	91
446	The role of natural killer cells in tumor control—effectors and regulators of adaptive immunity. Seminars in Immunopathology, 2005, 27, 49-64.	4.0	68
447	Sequential activation of NKT cells and NK cells provides effective innate immunotherapy of cancer. Journal of Experimental Medicine, 2005, 201, 1973-1985.	8.5	157
448	NKG2D function protects the host from tumor initiation. Journal of Experimental Medicine, 2005, 202, 583-588.	8.5	316
449	Differential antitumor immunity mediated by NKT cell subsets in vivo. Journal of Experimental Medicine, 2005, 202, 1279-1288.	8.5	349
450	T Cells Gene-engineered with DAP12 Mediate Effector Function in an NKG2D-dependent and Major Histocompatibility Complex-independent Manner. Journal of Biological Chemistry, 2005, 280, 38235-38241.	3.4	12

#	Article	IF	CITATIONS
451	Cutting Edge: TRAIL Deficiency Accelerates Hematological Malignancies. Journal of Immunology, 2005, 175, 5586-5590.	0.8	154
452	Functional Analysis of Granzyme M and Its Role in Immunity to Infection. Journal of Immunology, 2005, 175, 3235-3243.	0.8	66
453	NKT Cell Stimulation with Glycolipid Antigen In Vivo: Costimulation-Dependent Expansion, Bim-Dependent Contraction, and Hyporesponsiveness to Further Antigenic Challenge. Journal of Immunology, 2005, 175, 3092-3101.	0.8	163
454	IL-21 Enhances Tumor Rejection through a NKG2D-Dependent Mechanism. Journal of Immunology, 2005, 175, 2167-2173.	0.8	121
455	DX5/CD49b-Positive T Cells Are Not Synonymous with CD1d-Dependent NKT Cells. Journal of Immunology, 2005, 175, 4416-4425.	0.8	39
456	Adoptive transfer of T cells modified with a humanized chimeric receptor gene inhibits growth of Lewis-Y-expressing tumors in mice. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 19051-19056.	7.1	136
457	Calcium-dependent Plasma Membrane Binding and Cell Lysis by Perforin Are Mediated through Its C2 Domain. Journal of Biological Chemistry, 2005, 280, 8426-8434.	3.4	131
458	The Influence of CD1d in Postselection NKT Cell Maturation and Homeostasis. Journal of Immunology, 2005, 175, 3762-3768.	0.8	105
459	A nonclassical non-Vα14Jα18 CD1d-restricted (type II) NKT cell is sufficient for down-regulation of tumor immunosurveillance. Journal of Experimental Medicine, 2005, 202, 1627-1633.	8.5	262
460	Activation of NK cell cytotoxicity. Molecular Immunology, 2005, 42, 501-510.	2.2	560
461	Cross-talk between dendritic cells and natural killer cells in viral infection. Molecular Immunology, 2005, 42, 547-555.	2.2	89
462	A Network of PDZ-Containing Proteins Regulates T Cell Polarity and Morphology during Migration and Immunological Synapse Formation. Immunity, 2005, 22, 737-748.	14.3	237
463	NKT cell-dependent leukemia eradication following stem cell mobilization with potent G-CSF analogs. Journal of Clinical Investigation, 2005, 115, 3093-3103.	8.2	114
464	α-Galactosylceramide: Potential Immunomodulatory Activity and Future Application [General Articles]. Current Medicinal Chemistry, 2004, 11, 241-252.	2.4	74
465	Immunotherapy of Cancer Using Systemically Delivered Gene-Modified Human T Lymphocytes. Human Gene Therapy, 2004, 15, 699-708.	2.7	45
466	NKG2D Recognition and Perforin Effector Function Mediate Effective Cytokine Immunotherapy of Cancer. Journal of Experimental Medicine, 2004, 200, 1325-1335.	8.5	161
467	Induction of Tumor-specific T Cell Immunity by Anti-DR5 Antibody Therapy. Journal of Experimental Medicine, 2004, 199, 437-448.	8.5	193
468	Innate Immune Surveillance of Spontaneous B Cell Lymphomas by Natural Killer Cells and $\hat{I}^3\hat{I}$ T Cells. Journal of Experimental Medicine, 2004, 199, 879-884.	8.5	227

#	Article	IF	Citations
469	Granzyme M Mediates a Novel Form of Perforin-dependent Cell Death. Journal of Biological Chemistry, 2004, 279, 22236-22242.	3.4	113
470	The Elusive NKT Cell AntigenIs the Search Over?. Science, 2004, 306, 1687-1689.	12.6	31
471	The Functional Basis for Hemophagocytic Lymphohistiocytosis in a Patient with Co-inherited Missense Mutations in the Perforin (PFN1) Gene. Journal of Experimental Medicine, 2004, 200, 811-816.	8.5	67
472	IL-21 Induces the Functional Maturation of Murine NK Cells. Journal of Immunology, 2004, 172, 2048-2058.	0.8	294
473	Gene-Engineered T Cells as a Superior Adjuvant Therapy for Metastatic Cancer. Journal of Immunology, 2004, 173, 2143-2150.	0.8	77
474	Reversal in the Immunodominance Hierarchy in Secondary CD8+ T Cell Responses to Influenza A Virus: Roles for Cross-Presentation and Lysis-Independent Immunodomination. Journal of Immunology, 2004, 173, 5021-5027.	0.8	70
475	Cutting Edge: Novel Priming of Tumor-Specific Immunity by NKG2D-Triggered NK Cell-Mediated Tumor Rejection and Th1-Independent CD4+ T Cell Pathway. Journal of Immunology, 2004, 172, 757-761.	0.8	44
476	NK Cell TRAIL Eliminates Immature Dendritic Cells In Vivo and Limits Dendritic Cell Vaccination Efficacy. Journal of Immunology, 2004, 172, 123-129.	0.8	191
477	Regulation of antitumour immunity by CD1d-restricted NKT cells. Immunology and Cell Biology, 2004, 82, 323-331.	2.3	54
478	Regulation of antitumour immunity by CD1d-restricted NKT cells. Immunology and Cell Biology, 2004, 82, 323-331.	2.3	19
479	TRAIL and its receptors as targets for cancer therapy. Cancer Science, 2004, 95, 777-783.	3.9	240
480	Parallels and distinctions between T and NKT cell development in the thymus. Immunology and Cell Biology, 2004, 82, 269-275.	2.3	41
481	Cytokines in cancer immunity and immunotherapy. Immunological Reviews, 2004, 202, 275-293.	6.0	346
482	Response to 'A cancer immunosurveillance controversy'. Nature Immunology, 2004, 5, 4-5.	14.5	18
483	Antigen-induced tolerance by intrathymic modulation of self-recognizing inhibitory receptors. Nature Immunology, 2004, 5, 590-596.	14.5	42
484	NKT cells: what's in a name?. Nature Reviews Immunology, 2004, 4, 231-237.	22.7	1,097
485	Mutational analysis of P-glycoprotein: suppression of caspase activation in the absence of ATP-dependent drug efflux. Cell Death and Differentiation, 2004, 11, 1028-1037.	11.2	93
486	A functional role for CD28 costimulation in tumor recognition by single-chain receptor-modified T cells. Cancer Gene Therapy, 2004, 11, 371-379.	4.6	55

#	Article	IF	CITATIONS
487	Letter to the Editor. Immunologic Research, 2004, 30, 255-256.	2.9	О
488	Systemic NKT cell deficiency in NOD mice is not detected in peripheral blood: implications for human studies. Immunology and Cell Biology, 2004, 82, 247-252.	2.3	49
489	Subsite specificities of granzyme M: a study of inhibitors and newly synthesized thiobenzyl ester substrates. Archives of Biochemistry and Biophysics, 2004, 422, 9-22.	3.0	18
490	Unexpectedly, induction of cytotoxic T lymphocytes enhances the humoral response after DNA immunization. Blood, 2004, 103, 3073-3075.	1.4	6
491	Interleukin 21: A Key Player in Lymphocyte Maturation. Critical Reviews in Immunology, 2004, 24, 239-250.	0.5	35
492	EVIDENCE FOR THE EXISTENCE OF CANCER IMMUNOSURVEILLANCE. Annals of Cancer Research and Therapy, 2004, 12, 9-32.	0.3	0
493	Intrathymic NKT cell development is blocked by the presence of \hat{l}_{\pm} -galactosylceramide. European Journal of Immunology, 2003, 33, 1816-1823.	2.9	56
494	Functional interactions between dendritic cells and NK cells during viral infection. Nature Immunology, 2003, 4, 175-181.	14.5	327
495	Nature's TRAILâ€"On a Path to Cancer Immunotherapy. Immunity, 2003, 18, 1-6.	14.3	324
496	Activation of Natural Killer (NK) T Cells during Murine Cytomegalovirus Infection Enhances the Antiviral Response Mediated by NK Cells. Journal of Virology, 2003, 77, 1877-1884.	3.4	123
497	Â-Galactosylceramide (KRN7000) suppression of chemical- and oncogene-dependent carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9464-9469.	7.1	146
498	Normal Thymocyte Negative Selection in TRAIL-deficient Mice. Journal of Experimental Medicine, 2003, 198, 491-496.	8.5	71
499	Cutting Edge: Granzymes A and B Are Not Essential for Perforin-Mediated Tumor Rejection. Journal of Immunology, 2003, 171, 515-518.	0.8	86
500	Glycolipid Antigen Drives Rapid Expansion and Sustained Cytokine Production by NK T Cells. Journal of Immunology, 2003, 171, 4020-4027.	0.8	273
501	Blastocyst MHC, a Putative Murine Homologue of HLA-G, Protects TAP-Deficient Tumor Cells from Natural Killer Cell-Mediated Rejection In Vivo. Journal of Immunology, 2003, 171, 1715-1721.	0.8	30
502	The serine protease granzyme M is preferentially expressed in NK-cell, gamma delta T-cell, and intestinal T-cell lymphomas: evidence of origin from lymphocytes involved in innate immunity. Blood, 2003, 101, 3590-3593.	1.4	92
503	Nonredundant roles of antibody, cytokines, and perforin in the eradication of established Her-2/neu carcinomas. Journal of Clinical Investigation, 2003, 111, 1161-1170.	8.2	105
504	Discovery of an Innate Cancer Resistance Gene?. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2003, 3, 186-189.	3.4	1

#	Article	IF	CITATIONS
505	Tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis is an important endogenous mechanism for resistance to liver metastases in murine renal cancer. Cancer Research, 2003, 63, 207-13.	0.9	85
506	Inhibition of early tumor growth requires J alpha 18-positive (natural killer T) cells. Cancer Research, 2003, 63, 3058-60.	0.9	42
507	Tumor-Specific CTL Kill Murine Renal Cancer Cells Using Both Perforin and Fas Ligand-Mediated Lysis In Vitro, But Cause Tumor Regression In Vivo in the Absence of Perforin. Journal of Immunology, 2002, 168, 3484-3492.	0.8	121
508	Increased Susceptibility to Tumor Initiation and Metastasis in TNF-Related Apoptosis-Inducing Ligand-Deficient Mice. Journal of Immunology, 2002, 168, 1356-1361.	0.8	582
509	A Role for IFN- \hat{l}^3 in Primary and Secondary Immunity Generated by NK Cell-Sensitive Tumor-Expressing CD80 In Vivo. Journal of Immunology, 2002, 168, 4472-4479.	0.8	62
510	Rejection of Syngeneic Colon Carcinoma by CTLs Expressing Single-Chain Antibody Receptors Codelivering CD28 Costimulation. Journal of Immunology, 2002, 169, 5780-5786.	0.8	96
511	Suppression of Lymphoma and Epithelial Malignancies Effected by Interferon \hat{I}^3 . Journal of Experimental Medicine, 2002, 196, 129-134.	8.5	329
512	A Critical Role for Natural Killer T Cells in Immunosurveillance of Methylcholanthrene-induced Sarcomas. Journal of Experimental Medicine, 2002, 196, 119-127.	8.5	322
513	Critical Role for Tumor Necrosis Factor–related Apoptosis-inducing Ligand in Immune Surveillance Against Tumor Development. Journal of Experimental Medicine, 2002, 195, 161-169.	8.5	407
514	A Natural Killer T (NKT) Cell Developmental Pathway Involving a Thymus-dependent NK1.1â^'CD4+CD1d-dependent Precursor Stage. Journal of Experimental Medicine, 2002, 195, 835-844.	8.5	332
515	Cutting Edge: Tumor Rejection Mediated by NKG2D Receptor-Ligand Interaction Is Dependent upon Perforin. Journal of Immunology, 2002, 169, 5377-5381.	0.8	156
516	Sequential production of interferon- \hat{l}^3 by NK1.1+ T cells and natural killer cells is essential for the antimetastatic effect of \hat{l} ±-galactosylceramide. Blood, 2002, 99, 1259-1266.	1.4	362
517	Single-chain antigen recognition receptors that costimulate potent rejection of established experimental tumors. Blood, 2002, 100, 3155-3163.	1.4	165
518	P-glycoprotein as a General Antiapoptotic Protein., 2002,, 433-441.		0
519	The Role of NK Cells in Autoimmune Disease. Autoimmunity, 2002, 35, 1-14.	2.6	91
520	Suberoylanilide hydroxamic acid (SAHA) overcomes multidrug resistance and induces cell death in P-glycoprotein-expressing cells. International Journal of Cancer, 2002, 99, 292-298.	5.1	72
521	NKT cells — conductors of tumor immunity?. Current Opinion in Immunology, 2002, 14, 165-171.	5.5	270
522	TNF contributes to the immunopathology of perforin/Fas ligand double deficiency. Immunology and Cell Biology, 2002, 80, 436-440.	2.3	6

#	Article	IF	CITATIONS
523	P-glycoprotein inhibits caspase-8 activation but not formation of the death inducing signal complex (disc) following Fas ligation. Cell Death and Differentiation, 2002, 9, 1266-1272.	11.2	74
524	Induction of tumor-specific T cell memory by NK cell–mediated tumor rejection. Nature Immunology, 2002, 3, 83-90.	14.5	319
525	New aspects of natural-killer-cell surveillance and therapy of cancer. Nature Reviews Cancer, 2002, 2, 850-861.	28.4	655
526	Functional significance of the perforin/granzyme cell death pathway. Nature Reviews Immunology, 2002, 2, 735-747.	22.7	994
527	IFN-gamma-mediated inhibition of tumor angiogenesis by natural killer T-cell ligand, alpha-galactosylceramide. Blood, 2002, 100, 1728-33.	1.4	140
528	Lymphocyte-mediated immunosurveillance of epithelial cancers?. Trends in Immunology, 2001, 22, 409-411.	6.8	41
529	The histone deacetylase inhibitor and chemotherapeutic agent suberoylanilide hydroxamic acid (SAHA) induces a cell-death pathway characterized by cleavage of Bid and production of reactive oxygen species. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 10833-10838.	7.1	468
530	Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand (Trail) Contributes to Interferon γ–Dependent Natural Killer Cell Protection from Tumor Metastasis. Journal of Experimental Medicine, 2001, 193, 661-670.	8.5	484
531	Perforin and interferon- $\hat{\mathbf{i}}^3$ activities independently control tumor initiation, growth, and metastasis. Blood, 2001, 97, 192-197.	1.4	478
532	Dissecting the apoptotic mechanisms of chemotherapeutic drugs and lymphocytes to design effective anticancer therapies. Drug Development Research, 2001, 52, 549-557.	2.9	3
533	Granzyme A and B-deficient killer lymphocytes are defective in eliciting DNA fragmentation but retain potentin vivo anti-tumor capacity. European Journal of Immunology, 2001, 31, 39-47.	2.9	82
534	Involvement of Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand in NK Cell-Mediated and IFN-Î ³ -Dependent Suppression of Subcutaneous Tumor Growth. Cellular Immunology, 2001, 214, 194-200.	3.0	142
535	Involvement of tumor necrosis factor-related apoptosis-inducing ligand in surveillance of tumor metastasis by liver natural killer cells. Nature Medicine, 2001, 7, 94-100.	30.7	700
536	A fresh look at tumor immunosurveillance and immunotherapy. Nature Immunology, 2001, 2, 293-299.	14.5	650
537	Redirecting Mouse CTL Against Colon Carcinoma: Superior Signaling Efficacy of Single-Chain Variable Domain Chimeras Containing TCR-ζ vs FcεRI-γ. Journal of Immunology, 2001, 166, 182-187.	0.8	125
538	The Restricted Expression of Granzyme M in Human Lymphocytes. Journal of Immunology, 2001, 166, 765-771.	0.8	88
539	P-glycoprotein Does Not Protect Cells against Cytolysis Induced by Pore-forming Proteins. Journal of Biological Chemistry, 2001, 276, 16667-16673.	3.4	26
540	Cytometric and functional analyses of NK and NKT cell deficiencies in NOD mice. International Immunology, 2001, 13, 887-896.	4.0	133

#	Article	IF	Citations
541	NK cells and NKT cells collaborate in host protection from methylcholanthrene-induced fibrosarcoma. International Immunology, 2001, 13, 459-463.	4.0	365
542	Unlocking the secrets of cytotoxic granule proteins. Journal of Leukocyte Biology, 2001, 70, 18-29.	3.3	104
543	Role of TNF in lymphocyte-mediated cytotoxicity. Microscopy Research and Technique, 2000, 50, 196-208.	2.2	48
544	Proapoptotic functions of cytotoxic lymphocyte granule constituents in vitro and in vivo. Current Opinion in Immunology, 2000, 12, 323-329.	5.5	127
545	NKT cells: facts, functions and fallacies. Trends in Immunology, 2000, 21, 573-583.	7.5	771
546	NKT cells and tumor immunity—a double-edged sword. Nature Immunology, 2000, 1, 459-460.	14.5	188
547	Dependence of granzyme B-mediated cell death on a pathway regulated by Bcl-2 or its viral homolog, BHRF1. Cell Death and Differentiation, 2000, 7, 973-983.	11.2	47
548	Cytomegalovirus MHC class I homologues and natural killer cells: an overview. Microbes and Infection, 2000, 2, 521-532.	1.9	20
549	Multiple physiological functions for multidrug transporter P-glycoprotein?. Trends in Biochemical Sciences, 2000, 25, 1-6.	7.5	301
550	HMBA induces activation of a caspase-independent cell death pathway to overcome P-glycoprotein-mediated multidrug resistance. Blood, 2000, 95, 2378-2385.	1.4	76
551	Differential Tumor Surveillance by Natural Killer (Nk) and Nkt Cells. Journal of Experimental Medicine, 2000, 191, 661-668.	8.5	720
552	The Anti-Tumor Activity of IL-12: Mechanisms of Innate Immunity That Are Model and Dose Dependent. Journal of Immunology, 2000, 165, 2665-2670.	0.8	273
553	Redirected Perforin-Dependent Lysis of Colon Carcinoma by Ex Vivo Genetically Engineered CTL. Journal of Immunology, 2000, 164, 3705-3712.	0.8	79
554	Perforin-Mediated Cytotoxicity Is Critical for Surveillance of Spontaneous Lymphoma. Journal of Experimental Medicine, 2000, 192, 755-760.	8.5	481
555	Tumor Necrosis Factor Sustains the Generalized Lymphoproliferative Disorder (gld) Phenotype. Journal of Experimental Medicine, 2000, 191, 89-96.	8.5	55
556	A Role for P-Glycoprotein in Regulating Cell Death. Leukemia and Lymphoma, 2000, 38, 1-11.	1.3	105
557	Equivalent Death of P-Glycoprotein Expressing and Nonexpressing Cells Induced by the Protein Kinase C Inhibitor Staurosporine. Biochemical and Biophysical Research Communications, 2000, 276, 231-237.	2.1	13
558	HMBA induces activation of a caspase-independent cell death pathway to overcome P-glycoprotein-mediated multidrug resistance. Blood, 2000, 95, 2378-2385.	1.4	25

#	Article	IF	CITATIONS
559	HMBA induces activation of a caspase-independent cell death pathway to overcome P-glycoprotein-mediated multidrug resistance. Blood, 2000, 95, 2378-85.	1.4	26
560	P-Glycoprotein Protects Leukemia Cells Against Caspase-Dependent, but not Caspase-Independent, Cell Death. Blood, 1999, 93, 1075-1085.	1.4	288
561	Interleukin 2 Receptor Signaling Regulates the Perforin Gene through Signal Transducer and Activator of Transcription (Stat)5 Activation of Two Enhancers. Journal of Experimental Medicine, 1999, 190, 1297-1308.	8.5	98
562	M144, a Murine Cytomegalovirus (Mcmv)-Encoded Major Histocompatibility Complex Class I Homologue, Confers Tumor Resistance to Natural Killer Cell–Mediated Rejection. Journal of Experimental Medicine, 1999, 190, 435-444.	8.5	74
563	CTL granules: evolution of vesicles essential for combating virus infections. Trends in Immunology, 1999, 20, 351-356.	7.5	89
564	NK cells and apoptosis. Immunology and Cell Biology, 1999, 77, 64-75.	2.3	67
565	Perforin-Dependent Cytolytic Responses in \hat{l}^2 2-Microglobulin-Deficient Mice. Cellular Immunology, 1999, 196, 51-59.	3.0	14
566	Fas-ligand-mediated lysis of erbB-2-expressing tumour cells by redirected cytotoxic T lymphocytes. Cancer Immunology, Immunotherapy, 1999, 47, 278-286.	4.2	28
567	NKT cells are phenotypically and functionally diverse. European Journal of Immunology, 1999, 29, 3768-3781.	2.9	224
568	ACCESSORY FUNCTION FOR NK1.1+ NATURAL KILLER CELLS PRODUCING INTERFERON-?? IN XENOSPECIFIC CYTOTOXIC T LYMPHOCYTE DIFFERENTIATION1. Transplantation, 1999, 68, 840-843.	1.0	19
569	P-Glycoprotein Protects Leukemia Cells Against Caspase-Dependent, but not Caspase-Independent, Cell Death. Blood, 1999, 93, 1075-1085.	1.4	16
570	P-glycoprotein protects leukemia cells against caspase-dependent, but not caspase-independent, cell death. Blood, 1999, 93, 1075-85.	1.4	89
571	Perforin is a major contributor to NK cell control of tumor metastasis. Journal of Immunology, 1999, 162, 6658-62.	0.8	214
572	Multiple deficiencies underlie NK cell inactivity in lymphotoxin-alpha gene-targeted mice. Journal of Immunology, 1999, 163, 1350-3.	0.8	33
573	Adoptive transfer: The role of perforin in mouse cytotoxic T lymphocyte rejection of human tumor xenografts in vivo. Xenotransplantation, 1998, 5, 146-153.	2.8	14
574	Perforin-dependent nuclear entry of granzyme B precedes apoptosis, and is not a consequence of nuclear membrane dysfunction. Cell Death and Differentiation, 1998, 5, 488-496.	11.2	70
575	Expression in cytotoxic T lymphocytes of a single-chain anti-carcinoembryonic antigen antibody. Redirected Fas ligand-mediated lysis of colon carcinoma. European Journal of Immunology, 1998, 28, 1663-1672.	2.9	57
576	Delayed kinetics of tumor necrosis factor-mediated bystander lysis by peptide-specific CD8+ cytotoxic T lymphocytes. European Journal of Immunology, 1998, 28, 4162-4169.	2.9	30

#	Article	IF	Citations
577	The question begs â€" what is the role of P-glycoprotein in normal physiology?. Drug Resistance Updates, 1998, 1, 340-342.	14.4	O
578	Efficient Nuclear Targeting of Granzyme B and the Nuclear Consequences of Apoptosis Induced by Granzyme B and Perforin Are Caspase-dependent, but Cell Death Is Caspase-independent. Journal of Biological Chemistry, 1998, 273, 27934-27938.	3.4	135
579	An Essential Role for Tumor Necrosis Factor in Natural Killer Cell–mediated Tumor Rejection in the Peritoneum. Journal of Experimental Medicine, 1998, 188, 1611-1619.	8.5	126
580	The drug efflux protein, P-glycoprotein, additionally protects drug-resistant tumor cells from multiple forms of caspase-dependent apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 7024-7029.	7.1	328
581	XENOSPECIFIC CD8+ CYTOTOXIC T LYMPHOCYTE GENERATION. Transplantation, 1998, 65, 1278-1281.	1.0	7
582	The Relative Role of Lymphocyte Granule Exocytosis versus Death Receptor-Mediated Cytotoxicity in Viral Pathophysiology. Journal of Virology, 1998, 72, 1-9.	3.4	62
583	Fas Ligand-Mediated Lysis of Self Bystander Targets by Human Papillomavirus-Specific CD8 ⁺ Cytotoxic T Lymphocytes. Journal of Virology, 1998, 72, 5948-5954.	3.4	23
584	Xenogeneic mouse antiâ€human NK cytotoxicity is mediated via perforin. Xenotransplantation, 1997, 4, 78-84.	2.8	17
585	cDNA cloning of granzyme J. Immunogenetics, 1997, 45, 452-454.	2.4	5
586	XENOSPECIFIC CYTOTOXIC T LYMPHOCYTES. Transplantation, 1997, 63, 1171-1178.	1.0	28
587	Fas ligand-mediated bystander lysis of syngeneic cells in response to an allogeneic stimulus. Journal of Immunology, 1997, 158, 5765-72.	0.8	24
588	Localization of Granzyme B in the Nucleus. Journal of Biological Chemistry, 1996, 271, 4127-4133.	3.4	97
589	Cloning and expression of a second human natural killer cell granule tryptase, HNK-Tryp-2/granzyme 3. Journal of Leukocyte Biology, 1996, 59, 763-768.	3.3	25
590	The use of chimeric human Fclµ receptor I to redirect cytotoxic T lymphocytes to tumors. Journal of Leukocyte Biology, 1996, 60, 721-728.	3.3	28
591	Granzymes: a variety of serine protease specificities encoded by genetically distinct subfamilies. Journal of Leukocyte Biology, 1996, 60, 555-562.	3.3	79
592	Cloning and expression of the recombinant mouse natural killer cell granzymeMet-ase-1. Immunogenetics, 1996, 44, 340-350.	2.4	27
593	Redirected Cytotoxic Effector Function. Journal of Biological Chemistry, 1996, 271, 21214-21220.	3.4	12
594	Cloning and expression of the recombinant mouse natural killer cell granzyme Met-ase-1. Immunogenetics, 1996, 44, 340-350.	2.4	8

#	Article	IF	CITATIONS
595	XENOSPECIFIC CYTOTOXIC T LYMPHOCYTES USE PERFORIN-AND FAS-MEDIATED LYTIC PATHWAYS1. Transplantation, 1996, 62, 1529-1532.	1.0	36
596	A novel substrate-binding pocket interaction restricts the specificity of the human NK cell-specific serine protease, Met-ase-1. Journal of Immunology, 1996, 156, 4174-81.	0.8	28
597	Distinct granzyme expression in human CD3- CD56+ large granular- and CD3- CD56+ small high density-lymphocytes displaying non-MHC-restricted cytolytic activity. Journal of Leukocyte Biology, 1995, 57, 88-93.	3.3	16
598	Dual mechanisms of lymphocytemediated cytotoxicity serve to control and deliver the immune response. BioEssays, 1995, 17, 891-898.	2.5	11
599	Cloning and characterization of a novel NK cell-specific serine protease gene and its functional 5?-flanking sequences. Immunogenetics, 1995, 42, 101-11.	2.4	10
600	The natural killer cell serine protease gene Lmet1 maps to mouse chromosome 10. Immunogenetics, 1995, 41, 47-49.	2.4	11
601	Granzymes: exogenous porteinases that induce target cell apoptosis. Trends in Immunology, 1995, 16, 202-206.	7.5	369
602	The peptide loop consisting of amino acids 139–157 of human granzyme B (fragmentin 2) contains an immunodominant epitope recognized by the mouse. Molecular Immunology, 1995, 32, 909-917.	2.2	7
603	Expression of Recombinant Human MET-ASE-1: A NK Cell-Specific Granzyme. Biochemical and Biophysical Research Communications, 1995, 217, 675-683.	2.1	24
604	Cytotoxic lymphocyteâ€mediated immunotherapy. Australian and New Zealand Journal of Medicine, 1995, 25, 852-858.	0.5	1
605	Expression of recombinant human granzyme B. A processing and activation role for dipeptidyl peptidase I. Journal of Immunology, 1995, 154, 6299-305.	0.8	88
606	The genes encoding NK cell granule serine proteases, human tryptase-2 (TRYP2) and human granzyme A (HFSP), both map to chromosome 5q11-q12 and define a new locus for cytotoxic lymphocyte granule tryptases. Immunogenetics, 1994, 40, 235-237.	2.4	33
607	The gene encoding a human natural killer cell granule serine protease, Met-ase 1, maps to chromosome 19p13.3. Immunogenetics, 1994, 39, 294-5.	2.4	14
608	HYPOTHESIS: CYTOTOXIC LYMPHOCYTE GRANULE SERINE PROTEASES ACTIVATE TARGET CELL ENDONUCLEASES TO TRIGGER APOPTOSIS. Clinical and Experimental Pharmacology and Physiology, 1994, 21, 67-70.	1.9	21
609	Chemoimmunoconjugates for the Treatment of Cancer. Advances in Immunology, 1994, 56, 301-387.	2.2	31
610	Use of the 5′ -flanking region of the mouse perforin gene to express human Fcγ receptor I in cytotoxic T lymphocytes. Journal of Leukocyte Biology, 1994, 55, 514-522.	3.3	7
611	Granule serine proteases are normal nuclear constituents of natural killer cells. Journal of Biological Chemistry, 1994, 269, 18359-65.	3.4	30
612	Purification and cloning of a novel serine protease, RNK-Tryp-2, from the granules of a rat NK cell leukemia. Journal of Immunology, 1994, 152, 2289-97.	0.8	17

#	Article	IF	Citations
613	Immunochemotherapy of human colon carcinoma xenografts in nude mice using combinations of idarubicinâ€monoclonal antibody conjugates. Immunology and Cell Biology, 1993, 71, 167-179.	2.3	5
614	Killing by cytotoxic T cells and natural killer cells: Multiple granule serine proteases as initiators of DNA fragmentation. Immunology and Cell Biology, 1993, 71, 201-208.	2.3	41
615	Immunopurification of Functional Asp-ase (Natural Killer Cell Granzyme B) Using a Monoclonal Antibody. Biochemical and Biophysical Research Communications, 1993, 195, 910-920.	2.1	64
616	Expression of human perforin in a mouse cytotoxic T lymphocyte cell line: evidence for perturbation of granule-mediated cytotoxicity. Journal of Leukocyte Biology, 1993, 54, 528-533.	3.3	3
617	EVIDENCE THAT AN ANTHRACYCLINE-ANTI-CD8 IMMUNOCONJUGATE, IDARUBICIN-ANTI-LY-2.1, PROLONGS HEART ALLOGRAFT SURVIVAL IN MICE. Transplantation, 1993, 55, 484-489.	1.0	8
618	Molecular Mechanisms of Lymphocyte Cytotoxicity. , 1993, , 223-234.		1
619	Mechanisms of cytotoxicity used by human peripheral blood CD4+ and CD8+ T cell subsets. The role of granule exocytosis. Journal of Immunology, 1993, 151, 740-7.	0.8	18
620	Met-ase: cloning and distinct chromosomal location of a serine protease preferentially expressed in human natural killer cells. Journal of Immunology, 1993, 151, 6195-205.	0.8	48
621	Activation of human peripheral blood T lymphocytes by pharmacological induction of protein-tyrosine phosphorylation Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 10306-10310.	7.1	172
622	Generation and cytotoxic profile of human peripheral blood CD4 ⁺ T lymphocytes. Immunology and Cell Biology, 1992, 70, 379-390.	2.3	3
623	Multiple cytolytic mechanisms displayed by activated human peripheral blood T cell subsets. Journal of Immunology, 1992, 148, 55-62.	0.8	33
624	Immunoregulation in cancer-bearing hosts. Down-regulation of gene expression and cytotoxic function in CD8+ T cells. Journal of Immunology, 1992, 149, 949-56.	0.8	63
625	Purification and cloning of a novel serine protease, RNK-Met-1, from the granules of a rat natural killer cell leukemia. Journal of Biological Chemistry, 1992, 267, 24418-25.	3.4	43
626	Purification of a factor from the granules of a rat natural killer cell line (RNK) that reduces tumor cell growth and changes tumor morphology. Molecular identity with a granule serine protease (RNKP-1). Journal of Immunology, 1992, 148, 292-300.	0.8	32
627	IL-7 regulation of cytotoxic lymphocytes: Pore-forming protein gene expression, interferon- \hat{l}^3 production, and cytotoxicity of human peripheral blood lymphocyte subsets. Cellular Immunology, 1991, 138, 390-403.	3.0	49
628	Regulation of lymphokine-activated killer activity and pore-forming protein gene expression in human peripheral blood CD8+ T lymphocytes. Inhibition by transforming growth factor-beta. Journal of Immunology, 1991, 146, 3289-97.	0.8	118
629	Mechanistic studies of transforming growth factor-beta inhibition of IL-2-dependent activation of CD3- large granular lymphocyte functions. Regulation of IL-2R beta (p75) signal transduction. Journal of Immunology, 1991, 146, 3791-8.	0.8	51
630	Antitumor activity of idarubicin-monoclonal antibody conjugates in a disseminated thymic lymphoma model. Cancer Research, 1991, 51, 310-7.	0.9	4

#	Article	IF	CITATIONS
631	Comparison of the effect of IL-2 and IL-6 on the lytic activity of purified human peripheral blood large granular lymphocytes. Journal of Immunology, 1991, 146, 1380-4.	0.8	30
632	Differential regulation of interleukin-1 gene expression in human CD3â^ large granular lymphocytes. Cellular Immunology, 1990, 131, 184-190.	3.0	4
633	Constitutive expression of pore-forming protein in peripheral blood gamma/delta T cells: implication for their cytotoxic role in vivo Journal of Experimental Medicine, 1990, 172, 1877-1880.	8.5	108
634	Interleukin 2 induction of pore-forming protein gene expression in human peripheral blood CD8+ T cells Journal of Experimental Medicine, 1990, 171, 1269-1281.	8.5	109
635	IL-2 and IL-6 synergize to augment the pore-forming protein gene expression and cytotoxic potential of human peripheral blood T cells. Journal of Immunology, 1990, 145, 1159-66.	0.8	59
636	THE EFFECT OF IDARUBICIN MONOCLONAL ANTIBODY TREATMENT ON FIRST-SET REJECTION OF MURINE SKIN ALLOGRAFTS. Transplantation, 1989, 48, 77-79.	1.0	1
637	ROLE OF MONOCLONAL ANTIBODIES IN THE THERAPY OF SOLID TUMOURS. ANZ Journal of Surgery, 1988, 58, 843-849.	0.7	1
638	IMMUNOSUPPRESSION OF GRAFT REJECTION WITH IDARUBICIN-MONOCLONAL ANTIBODY CONJUGATES BY ELIMINATION OF T CELL SUBSETS IN VIVO. Transplantation, 1988, 46, 126-131.	1.0	2
639	Monoclonal antibody-mediated targeting of alkylating agents for the treatment of cancer. Targeted Diagnosis and Therapy, 1988, 1, 123-56.	0.1	O
640	Increased antitumor effect of immunoconjugates and tumor necrosis factor in vivo. Cancer Research, 1988, 48, 3607-12.	0.9	30
641	Immunochemotherapy of a murine thymoma with the use of idarubicin monoclonal antibody conjugates. Cancer Research, 1988, 48, 926-31.	0.9	27
642	The use of monoclonal antibody conjugates for the diagnosis and treatment of cancer. Immunology and Cell Biology, 1987, 65, 111-125.	2.3	26
643	The mode of action of methotrexateâ€monoclonal antibody conjugates. Immunology and Cell Biology, 1987, 65, 189-200.	2.3	19
644	The cellular uptake and cytotoxicity of chlorambucilâ€monoclonal autibody conjugates. Immunology and Cell Biology, 1987, 65, 315-321.	2.3	4
645	The in vitro and in vivo anti-tumour activity of N-AcMEL-(Fab')2 conjugates. British Journal of Cancer, 1987, 55, 7-11.	6.4	13
646	Use of vasoactive agents to increase tumor perfusion and the antitumor efficacy of drug-monoclonal antibody conjugates. Journal of the National Cancer Institute, 1987, 79, 1367-73.	6.3	34
647	Selective enhancement of antitumor activity of N-acetyl melphalan upon conjugation to monoclonal antibodies. Cancer Research, 1987, 47, 62-9.	0.9	28
648	Specific targeting of chlorambucil to tumors with the use of monoclonal antibodies. Journal of the National Cancer Institute, 1986, 76, 503-10.	6.3	28

#	Article	IF	CITATIONS
649	Potentiation of the in vitro cytotoxicity of chlorambucil by monoclonal antibodies. Journal of Immunology, 1986, 137, 3361-6.	0.8	3