Mark J Smyth ## List of Publications by Year in descending order Source: https://exaly.com/author-pdf/1004513/publications.pdf Version: 2024-02-01 177 333 98,212 649 153 286 citations h-index g-index papers 731 731 731 76855 docs citations times ranked citing authors all docs | # | Article | IF | CITATIONS | |----|---|------|-----------| | 1 | Cancer Immunoediting: Integrating Immunity's Roles in Cancer Suppression and Promotion. Science, 2011, 331, 1565-1570. | 6.0 | 4,987 | | 2 | Natural Innate and Adaptive Immunity to Cancer. Annual Review of Immunology, 2011, 29, 235-271. | 9.5 | 1,691 | | 3 | Activation of the NLRP3 inflammasome in dendritic cells induces IL- $1\hat{l}^2\hat{a}$ endent adaptive immunity against tumors. Nature Medicine, 2009, 15, 1170-1178. | 15.2 | 1,614 | | 4 | Adaptive immunity maintains occult cancer in an equilibrium state. Nature, 2007, 450, 903-907. | 13.7 | 1,204 | | 5 | Immune surveillance of tumors. Journal of Clinical Investigation, 2007, 117, 1137-1146. | 3.9 | 1,198 | | 6 | Classifying Cancers Based on T-cell Infiltration and PD-L1. Cancer Research, 2015, 75, 2139-2145. | 0.4 | 1,167 | | 7 | New insights into cancer immunoediting and its three component phases—elimination, equilibrium and escape. Current Opinion in Immunology, 2014, 27, 16-25. | 2.4 | 1,163 | | 8 | NKT cells: what's in a name?. Nature Reviews Immunology, 2004, 4, 231-237. | 10.6 | 1,097 | | 9 | Cancer immunoediting and resistance to T cell-based immunotherapy. Nature Reviews Clinical Oncology, 2019, 16, 151-167. | 12.5 | 1,093 | | 10 | Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature, 2012, 482, 400-404. | 13.7 | 1,075 | | 11 | Tumor infiltrating lymphocytes are prognostic in triple negative breast cancer and predictive for trastuzumab benefit in early breast cancer: results from the FinHER trial. Annals of Oncology, 2014, 25, 1544-1550. | 0.6 | 1,022 | | 12 | Functional significance of the perforin/granzyme cell death pathway. Nature Reviews Immunology, 2002, 2, 735-747. | 10.6 | 994 | | 13 | Translational biology of osteosarcoma. Nature Reviews Cancer, 2014, 14, 722-735. | 12.8 | 939 | | 14 | Type I interferons in anticancer immunity. Nature Reviews Immunology, 2015, 15, 405-414. | 10.6 | 929 | | 15 | Targeting natural killer cells in cancer immunotherapy. Nature Immunology, 2016, 17, 1025-1036. | 7.0 | 865 | | 16 | Cancer cell–autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nature Medicine, 2014, 20, 1301-1309. | 15.2 | 823 | | 17 | The TRAIL apoptotic pathway in cancer onset, progression and therapy. Nature Reviews Cancer, 2008, 8, 782-798. | 12.8 | 788 | | 18 | NKT cells: facts, functions and fallacies. Trends in Immunology, 2000, 21, 573-583. | 7.5 | 771 | | # | Article | IF | Citations | |----|---|------|-----------| | 19 | Combination cancer immunotherapies tailored to the tumour microenvironment. Nature Reviews Clinical Oncology, 2016, 13, 143-158. | 12.5 | 753 | | 20 | Mechanism of Action of Conventional and Targeted Anticancer Therapies: Reinstating Immunosurveillance. Immunity, 2013, 39, 74-88. | 6.6 | 739 | | 21 | Differential Tumor Surveillance by Natural Killer (Nk) and Nkt Cells. Journal of Experimental Medicine, 2000, 191, 661-668. | 4.2 | 720 | | 22 | Involvement of tumor necrosis factor-related apoptosis-inducing ligand in surveillance of tumor metastasis by liver natural killer cells. Nature Medicine, 2001, 7, 94-100. | 15.2 | 700 | | 23 | Cancer Immunosurveillance and Immunoediting: The Roles of Immunity in Suppressing Tumor Development and Shaping Tumor Immunogenicity. Advances in Immunology, 2006, 90, 1-50. | 1.1 | 689 | | 24 | Consensus guidelines for the detection of immunogenic cell death. Oncolmmunology, 2014, 3, e955691. | 2.1 | 686 | | 25 | Clinical relevance of host immunity in breast cancer: from TILs to the clinic. Nature Reviews Clinical Oncology, 2016, 13, 228-241. | 12.5 | 679 | | 26 | IL-21 regulates germinal center B cell differentiation and proliferation through a B cell–intrinsic mechanism. Journal of Experimental Medicine, 2010, 207, 365-378. | 4.2 | 661 | | 27 | IL-21 acts directly on B cells to regulate Bcl-6 expression and germinal center responses. Journal of Experimental Medicine, 2010, 207, 353-363. | 4.2 | 659 | | 28 | IL-12 and IL-23 cytokines: from discovery to targeted therapies for immune-mediated inflammatory diseases. Nature Medicine, 2015, 21, 719-729. | 15.2 | 658 | | 29 | New aspects of natural-killer-cell surveillance and therapy of cancer. Nature Reviews Cancer, 2002, 2, 850-861. | 12.8 | 655 | | 30 | A fresh look at tumor immunosurveillance and immunotherapy. Nature Immunology, 2001, 2, 293-299. | 7.0 | 650 | | 31 | CD27 Dissects Mature NK Cells into Two Subsets with Distinct Responsiveness and Migratory Capacity. Journal of Immunology, 2006, 176, 1517-1524. | 0.4 | 650 | | 32 | Consensus guidelines for the definition, detection and interpretation of immunogenic cell death., 2020, 8, e000337. | | 610 | | 33 | Anti-PD-1 Antibody Therapy Potently Enhances the Eradication of Established Tumors By Gene-Modified T Cells. Clinical Cancer Research, 2013, 19, 5636-5646. | 3.2 | 598 | | 34 | Improved Efficacy of Neoadjuvant Compared to Adjuvant Immunotherapy to Eradicate Metastatic Disease. Cancer Discovery, 2016, 6, 1382-1399. | 7.7 | 592 | | 35 | Increased Susceptibility to Tumor Initiation and Metastasis in TNF-Related Apoptosis-Inducing
Ligand-Deficient Mice. Journal of Immunology, 2002, 168, 1356-1361. | 0.4 | 582 | | 36 | Anticancer Chemotherapy-Induced Intratumoral Recruitment and Differentiation of Antigen-Presenting Cells. Immunity, 2013, 38, 729-741. | 6.6 | 572 | | # | Article | IF | Citations | |----|--|------|-----------| | 37 | Activation of NK cell cytotoxicity. Molecular Immunology, 2005, 42, 501-510. | 1.0 | 560 | | 38 | Control of Metastasis by NK Cells. Cancer Cell, 2017, 32, 135-154. | 7.7 | 549 | | 39 | Targeting immunosuppressive adenosine in cancer. Nature Reviews Cancer, 2017, 17, 709-724. | 12.8 | 526 | | 40 | Mechanism of action of immunomodulatory drugs (IMiDS) in multiple myeloma. Leukemia, 2010, 24, 22-32. | 3.3 | 505 | | 41 | Tumor immunoevasion by the conversion of effector NK cells into type 1 innate lymphoid cells. Nature Immunology, 2017, 18, 1004-1015. | 7.0 | 504 | | 42 | Perforin-mediated target-cell death and immune homeostasis. Nature Reviews Immunology, 2006, 6, 940-952. | 10.6 | 494 | | 43 | Close encounters of different kinds: Dendritic cells and NK cells take centre stage. Nature Reviews Immunology, 2005, 5, 112-124. | 10.6 | 493 | | 44 | Anti-CD73 antibody therapy inhibits breast tumor growth and metastasis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1547-1552. | 3.3 | 492 | | 45 | Extracellular adenosine triphosphate and adenosine in cancer. Oncogene, 2010, 29, 5346-5358. | 2.6 | 489 | | 46 | Anti-TIM3 Antibody Promotes T Cell IFN-γ–Mediated Antitumor Immunity and Suppresses Established Tumors. Cancer Research, 2011, 71, 3540-3551. | 0.4 | 489 | | 47 | Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand (Trail) Contributes to Interferon γ–Dependent Natural Killer Cell Protection from Tumor Metastasis. Journal of Experimental Medicine, 2001, 193, 661-670. | 4.2 | 484 | | 48 | Perforin-Mediated Cytotoxicity Is Critical for Surveillance of Spontaneous Lymphoma. Journal of Experimental Medicine, 2000, 192, 755-760. | 4.2 | 481 | | 49 | Perforin and interferon- \hat{l}^3 activities independently control tumor initiation, growth, and metastasis. Blood, 2001, 97, 192-197. | 0.6 | 478 | | 50 | TIGIT predominantly regulates the immune response via regulatory T cells. Journal of Clinical Investigation, 2015, 125, 4053-4062. | 3.9 | 470 | | 51 | The histone deacetylase inhibitor and chemotherapeutic agent suberoylanilide hydroxamic acid (SAHA) induces a cell-death pathway characterized by cleavage of Bid and production of reactive oxygen species. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 10833-10838. | 3.3 | 468 | | 52 | TGF- \hat{l}^2 inhibits the activation and functions of NK cells by repressing the mTOR pathway. Science Signaling, 2016, 9, ra19. | 1.6 | 453 | | 53 | Resistance to PD1/PDL1 checkpoint inhibition. Cancer Treatment Reviews, 2017, 52, 71-81. | 3.4 | 437 | | 54 | Activating and inhibitory receptors of natural killer cells. Immunology and Cell Biology, 2011, 89, 216-224. | 1.0 | 426 | | # | Article | IF | CITATIONS | |----|--|------|-----------| | 55 | Anti–ErbB-2 mAb therapy requires type I and II interferons and synergizes with anti–PD-1 or anti-CD137 mAb therapy. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7142-7147. | 3.3 | 413 | | 56 | Diverse cytokine production by NKT cell subsets and identification of an IL-17–producing CD4 ⟨sup>â°'⟨ sup> NK1.1 ⟨sup>â°'⟨ sup> NKT cell population. Proceedings of the National Academy of Sciences of the
United States of America, 2008, 105, 11287-11292. | 3.3 | 410 | | 57 | The receptors CD96 and CD226 oppose each other in the regulation of natural killer cell functions. Nature Immunology, 2014, 15, 431-438. | 7.0 | 410 | | 58 | Balancing natural killer cell activation through paired receptors. Nature Reviews Immunology, 2015, 15, 243-254. | 10.6 | 410 | | 59 | Critical Role for Tumor Necrosis Factor–related Apoptosis-inducing Ligand in Immune Surveillance
Against Tumor Development. Journal of Experimental Medicine, 2002, 195, 161-169. | 4.2 | 407 | | 60 | Silencing of Irf7 pathways in breast cancer cells promotes bone metastasis through immune escape. Nature Medicine, 2012, 18, 1224-1231. | 15.2 | 406 | | 61 | CD73 promotes anthracycline resistance and poor prognosis in triple negative breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11091-11096. | 3.3 | 406 | | 62 | Classification of current anticancer immunotherapies. Oncotarget, 2014, 5, 12472-12508. | 0.8 | 395 | | 63 | Targeting CD73 Enhances the Antitumor Activity of Anti-PD-1 and Anti-CTLA-4 mAbs. Clinical Cancer Research, 2013, 19, 5626-5635. | 3.2 | 381 | | 64 | Granzymes: exogenous porteinases that induce target cell apoptosis. Trends in Immunology, 1995, 16, 202-206. | 7.5 | 369 | | 65 | An Immunosurveillance Mechanism Controls Cancer Cell Ploidy. Science, 2012, 337, 1678-1684. | 6.0 | 367 | | 66 | NK cells and NKT cells collaborate in host protection from methylcholanthrene-induced fibrosarcoma. International Immunology, 2001, 13, 459-463. | 1.8 | 365 | | 67 | The pre-metastatic niche: finding common ground. Cancer and Metastasis Reviews, 2013, 32, 449-464. | 2.7 | 364 | | 68 | Sequential production of interferon- \hat{l}^3 by NK1.1+ T cells and natural killer cells is essential for the antimetastatic effect of \hat{l} ±-galactosylceramide. Blood, 2002, 99, 1259-1266. | 0.6 | 362 | | 69 | CD4+CD25+ T Regulatory Cells Suppress NK Cell-Mediated Immunotherapy of Cancer. Journal of Immunology, 2006, 176, 1582-1587. | 0.4 | 362 | | 70 | Persistence and Efficacy of Second Generation CAR T Cell Against the LeY Antigen in Acute Myeloid Leukemia. Molecular Therapy, 2013, 21, 2122-2129. | 3.7 | 361 | | 71 | CD73-Deficient Mice Have Increased Antitumor Immunity and Are Resistant to Experimental Metastasis. Cancer Research, 2011, 71, 2892-2900. | 0.4 | 353 | | 72 | Acquired resistance to immunotherapy and future challenges. Nature Reviews Cancer, 2016, 16, 121-126. | 12.8 | 353 | | # | Article | IF | Citations | |----|---|------|-----------| | 73 | <scp>TIGIT</scp> and <scp>CD</scp> 96: new checkpoint receptor targets for cancer immunotherapy.
Immunological Reviews, 2017, 276, 112-120. | 2.8 | 351 | | 74 | Differential antitumor immunity mediated by NKT cell subsets in vivo. Journal of Experimental Medicine, 2005, 202, 1279-1288. | 4.2 | 349 | | 75 | Membrane-bound Fas ligand only is essential for Fas-induced apoptosis. Nature, 2009, 461, 659-663. | 13.7 | 348 | | 76 | Cytokines in cancer immunity and immunotherapy. Immunological Reviews, 2004, 202, 275-293. | 2.8 | 346 | | 77 | IL-21 Is Produced by NKT Cells and Modulates NKT Cell Activation and Cytokine Production. Journal of Immunology, 2007, 178, 2827-2834. | 0.4 | 338 | | 78 | A Natural Killer T (NKT) Cell Developmental Pathway Involving a Thymus-dependent NK1.1â^'CD4+CD1d-dependent Precursor Stage. Journal of Experimental Medicine, 2002, 195, 835-844. | 4.2 | 332 | | 79 | BAFF and MyD88 signals promote a lupuslike disease independent of T cells. Journal of Experimental Medicine, 2007, 204, 1959-1971. | 4.2 | 332 | | 80 | Suppression of Lymphoma and Epithelial Malignancies Effected by Interferon \hat{l}^3 . Journal of Experimental Medicine, 2002, 196, 129-134. | 4.2 | 329 | | 81 | The drug efflux protein, P-glycoprotein, additionally protects drug-resistant tumor cells from multiple forms of caspase-dependent apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 7024-7029. | 3.3 | 328 | | 82 | Functional interactions between dendritic cells and NK cells during viral infection. Nature Immunology, 2003, 4, 175-181. | 7.0 | 327 | | 83 | Pembrolizumab plus trastuzumab in trastuzumab-resistant, advanced, HER2-positive breast cancer (PANACEA): a single-arm, multicentre, phase 1b–2 trial. Lancet Oncology, The, 2019, 20, 371-382. | 5.1 | 327 | | 84 | Tumor Cell Death and ATP Release Prime Dendritic Cells and Efficient Anticancer Immunity. Cancer Research, 2010, 70, 855-858. | 0.4 | 326 | | 85 | Nature's TRAILâ€"On a Path to Cancer Immunotherapy. Immunity, 2003, 18, 1-6. | 6.6 | 324 | | 86 | Presumed guilty: natural killer T cell defects and human disease. Nature Reviews Immunology, 2011, 11, 131-142. | 10.6 | 324 | | 87 | A Critical Role for Natural Killer T Cells in Immunosurveillance of Methylcholanthrene-induced Sarcomas. Journal of Experimental Medicine, 2002, 196, 119-127. | 4.2 | 322 | | 88 | Induction of tumor-specific T cell memory by NK cell–mediated tumor rejection. Nature Immunology, 2002, 3, 83-90. | 7.0 | 319 | | 89 | Molecular and Translational Classifications of DAMPs in Immunogenic Cell Death. Frontiers in Immunology, 2015, 6, 588. | 2.2 | 317 | | 90 | NKG2D function protects the host from tumor initiation. Journal of Experimental Medicine, 2005, 202, 583-588. | 4.2 | 316 | | # | Article | IF | CITATIONS | |--------------------------|---|--------------------------|--------------------------| | 91 | Primary Tumor Hypoxia Recruits CD11b+/Ly6Cmed/Ly6G+ Immune Suppressor Cells and Compromises NK Cell Cytotoxicity in the Premetastatic Niche. Cancer Research, 2012, 72, 3906-3911. | 0.4 | 316 | | 92 | CD73: a potent suppressor of antitumor immune responses. Trends in Immunology, 2012, 33, 231-237. | 2.9 | 310 | | 93 | Blockade of A _{2A} receptors potently suppresses the metastasis of CD73 ⁺ tumors. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14711-14716. | 3.3 | 306 | | 94 | Contribution of IL-17–producing γδT cells to the efficacy of anticancer chemotherapy. Journal of Experimental Medicine, 2011, 208, 491-503. | 4.2 | 303 | | 95 | DNAM-1 promotes activation of cytotoxic lymphocytes by nonprofessional antigen-presenting cells and tumors. Journal of Experimental Medicine, 2008, 205, 2965-2973. | 4.2 | 302 | | 96 | Pivotal Role of Innate and Adaptive Immunity in Anthracycline Chemotherapy of Established Tumors. Cancer Research, 2011, 71, 4809-4820. | 0.4 | 302 | | 97 | Multiple physiological functions for multidrug transporter P-glycoprotein?. Trends in Biochemical Sciences, 2000, 25, 1-6. | 3.7 | 301 | | 98 | Co-inhibition of CD73 and A2AR Adenosine Signaling Improves Anti-tumor Immune Responses. Cancer Cell, 2016, 30, 391-403. | 7.7 | 300 | | 99 | IL-21 Induces the Functional Maturation of Murine NK Cells. Journal of Immunology, 2004, 172, 2048-2058. | 0.4 | 294 | | | | | | | 100 | CIS is a potent checkpoint in NK cell–mediated tumor immunity. Nature Immunology, 2016, 17, 816-824. | 7.0 | 289 | | 100 | CIS is a potent checkpoint in NK cell–mediated tumor immunity. Nature Immunology, 2016, 17, 816-824. P-Glycoprotein Protects Leukemia Cells Against Caspase-Dependent, but not Caspase-Independent, Cell Death. Blood, 1999, 93, 1075-1085. | 7.0 | 289 | | | P-Glycoprotein Protects Leukemia Cells Against Caspase-Dependent, but not Caspase-Independent, Cell | | | | 101 | P-Glycoprotein Protects Leukemia Cells Against Caspase-Dependent, but not Caspase-Independent, Cell Death. Blood, 1999, 93, 1075-1085. Cancer immunoediting by the innate immune system in the absence of adaptive immunity. Journal of | 0.6 | 288 | | 101 | P-Glycoprotein Protects Leukemia Cells Against Caspase-Dependent, but not Caspase-Independent, Cell Death. Blood, 1999, 93, 1075-1085. Cancer immunoediting by the innate immune system in the absence of adaptive immunity. Journal of Experimental Medicine, 2012, 209, 1869-1882. The Anti-Tumor Activity of IL-12: Mechanisms of Innate Immunity That Are Model and Dose Dependent. | 0.6 | 288 | | 101
102
103 | P-Glycoprotein Protects Leukemia Cells Against Caspase-Dependent, but not Caspase-Independent, Cell Death. Blood, 1999, 93, 1075-1085. Cancer immunoediting by the innate immune system in the absence of adaptive immunity. Journal of Experimental Medicine, 2012, 209, 1869-1882. The Anti-Tumor Activity of IL-12: Mechanisms of Innate Immunity That Are Model and Dose Dependent. Journal of Immunology, 2000, 165, 2665-2670. Glycolipid Antigen Drives Rapid Expansion and Sustained Cytokine Production by NK T Cells. Journal of | 0.6 4.2 0.4 | 288
281
273 | | 101
102
103 | P-Glycoprotein Protects Leukemia Cells Against Caspase-Dependent, but not Caspase-Independent, Cell Death. Blood, 1999, 93, 1075-1085. Cancer immunoediting by the innate immune system in the absence of adaptive immunity. Journal of Experimental
Medicine, 2012, 209, 1869-1882. The Anti-Tumor Activity of IL-12: Mechanisms of Innate Immunity That Are Model and Dose Dependent. Journal of Immunology, 2000, 165, 2665-2670. Glycolipid Antigen Drives Rapid Expansion and Sustained Cytokine Production by NK T Cells. Journal of Immunology, 2003, 171, 4020-4027. Myeloid immunosuppression and immune checkpoints in the tumor microenvironment. Cellular and | 0.6
4.2
0.4 | 288
281
273
273 | | 101
102
103
104 | P-Glycoprotein Protects Leukemia Cells Against Caspase-Dependent, but not Caspase-Independent, Cell Death. Blood, 1999, 93, 1075-1085. Cancer immunoediting by the innate immune system in the absence of adaptive immunity. Journal of Experimental Medicine, 2012, 209, 1869-1882. The Anti-Tumor Activity of IL-12: Mechanisms of Innate Immunity That Are Model and Dose Dependent. Journal of Immunology, 2000, 165, 2665-2670. Glycolipid Antigen Drives Rapid Expansion and Sustained Cytokine Production by NK T Cells. Journal of Immunology, 2003, 171, 4020-4027. Myeloid immunosuppression and immune checkpoints in the tumor microenvironment. Cellular and Molecular Immunology, 2020, 17, 1-12. NK Cell Maturation and Peripheral Homeostasis Is Associated with KLRG1 Up-Regulation. Journal of | 0.6
4.2
0.4
0.4 | 288
281
273
273 | | # | Article | IF | CITATIONS | |-----|---|------|-----------| | 109 | Demonstration of inflammation-induced cancer and cancer immunoediting during primary tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 652-656. | 3.3 | 270 | | 110 | A2AR Adenosine Signaling Suppresses Natural Killer Cell Maturation in the Tumor Microenvironment. Cancer Research, 2018, 78, 1003-1016. | 0.4 | 269 | | 111 | Mouse models in oncoimmunology. Nature Reviews Cancer, 2016, 16, 759-773. | 12.8 | 267 | | 112 | A nonclassical non- $\hat{Vl}\pm14\hat{l}\pm18$ CD1d-restricted (type II) NKT cell is sufficient for down-regulation of tumor immunosurveillance. Journal of Experimental Medicine, 2005, 202, 1627-1633. | 4.2 | 262 | | 113 | Type I IFN Contributes to NK Cell Homeostasis, Activation, and Antitumor Function. Journal of Immunology, 2007, 178, 7540-7549. | 0.4 | 261 | | 114 | Targeting Cancer-Derived Adenosine: New Therapeutic Approaches. Cancer Discovery, 2014, 4, 879-888. | 7.7 | 256 | | 115 | Host immunity contributes to the anti-melanoma activity of BRAF inhibitors. Journal of Clinical Investigation, 2013, 123, 1371-1381. | 3.9 | 256 | | 116 | Immune-mediated dormancy: an equilibrium with cancer. Journal of Leukocyte Biology, 2008, 84, 988-993. | 1.5 | 253 | | 117 | TIM3 ⁺ FOXP3 ⁺ regulatory T cells are tissue-specific promoters of T-cell dysfunction in cancer. Oncolmmunology, 2013, 2, e23849. | 2.1 | 251 | | 118 | Eradication of established tumors in mice by a combination antibody-based therapy. Nature Medicine, 2006, 12, 693-698. | 15.2 | 248 | | 119 | Radiotherapy Increases the Permissiveness of Established Mammary Tumors to Rejection by Immunomodulatory Antibodies. Cancer Research, 2012, 72, 3163-3174. | 0.4 | 248 | | 120 | The NK cell–cancer cycle: advances and new challenges in NK cell–based immunotherapies. Nature Immunology, 2020, 21, 835-847. | 7.0 | 243 | | 121 | TRAIL and its receptors as targets for cancer therapy. Cancer Science, 2004, 95, 777-783. | 1.7 | 240 | | 122 | TRAIL identifies immature natural killer cells in newborn mice and adult mouse liver. Blood, 2005, 105, 2082-2089. | 0.6 | 237 | | 123 | A Network of PDZ-Containing Proteins Regulates T Cell Polarity and Morphology during Migration and Immunological Synapse Formation. Immunity, 2005, 22, 737-748. | 6.6 | 237 | | 124 | Interleukin 15–mediated survival of natural killer cells is determined by interactions among Bim, Noxa and Mcl-1. Nature Immunology, 2007, 8, 856-863. | 7.0 | 231 | | 125 | Selective Depletion of Foxp3+ Regulatory T Cells Improves Effective Therapeutic Vaccination against Established Melanoma. Cancer Research, 2010, 70, 7788-7799. | 0.4 | 228 | | 126 | Innate Immune Surveillance of Spontaneous B Cell Lymphomas by Natural Killer Cells and $\hat{I}^3\hat{I}^{\prime}$ T Cells. Journal of Experimental Medicine, 2004, 199, 879-884. | 4.2 | 227 | | # | Article | IF | CITATIONS | |-----|--|------|-----------| | 127 | NKT cells are phenotypically and functionally diverse. European Journal of Immunology, 1999, 29, 3768-3781. | 1.6 | 224 | | 128 | Functional subsets of mouse natural killer cells. Immunological Reviews, 2006, 214, 47-55. | 2.8 | 222 | | 129 | Antimetastatic Effects of Blocking PD-1 and the Adenosine A2A Receptor. Cancer Research, 2014, 74, 3652-3658. | 0.4 | 217 | | 130 | Perforin is a major contributor to NK cell control of tumor metastasis. Journal of Immunology, 1999, 162, 6658-62. | 0.4 | 214 | | 131 | Reactive Neutrophil Responses Dependent on the Receptor Tyrosine Kinase c-MET Limit Cancer Immunotherapy. Immunity, 2017, 47, 789-802.e9. | 6.6 | 207 | | 132 | A Threshold Level of Intratumor CD8+ T-cell PD1 Expression Dictates Therapeutic Response to Anti-PD1. Cancer Research, 2015, 75, 3800-3811. | 0.4 | 201 | | 133 | Differential Recognition of CD1d- $\hat{l}\pm$ -Galactosyl Ceramide by the VÎ ² 8.2 and VÎ ² 7 Semi-invariant NKT T Cell Receptors. Immunity, 2009, 31, 47-59. | 6.6 | 198 | | 134 | Suppression of Metastases Using a New Lymphocyte Checkpoint Target for Cancer Immunotherapy. Cancer Discovery, 2016, 6, 446-459. | 7.7 | 198 | | 135 | TIGIT immune checkpoint blockade restores CD8+ T-cell immunity against multiple myeloma. Blood, 2018, 132, 1689-1694. | 0.6 | 198 | | 136 | Analysis of the apoptotic and therapeutic activities of histone deacetylase inhibitors by using a mouse model of B cell lymphoma. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8071-8076. | 3.3 | 195 | | 137 | Induction of Tumor-specific T Cell Immunity by Anti-DR5 Antibody Therapy. Journal of Experimental Medicine, 2004, 199, 437-448. | 4.2 | 193 | | 138 | NK Cell TRAIL Eliminates Immature Dendritic Cells In Vivo and Limits Dendritic Cell Vaccination Efficacy. Journal of Immunology, 2004, 172, 123-129. | 0.4 | 191 | | 139 | Innate immunity defines the capacity of antiviral T cells to limit persistent infection. Journal of Experimental Medicine, 2010, 207, 1333-1343. | 4.2 | 190 | | 140 | NKT cells and tumor immunity—a double-edged sword. Nature Immunology, 2000, 1, 459-460. | 7.0 | 188 | | 141 | Targeting CD39 in cancer. Nature Reviews Immunology, 2020, 20, 739-755. | 10.6 | 185 | | 142 | Chemotherapy and radiotherapy: Cryptic anticancer vaccines. Seminars in Immunology, 2010, 22, 113-124. | 2.7 | 183 | | 143 | Inflammation and immune surveillance in cancer. Seminars in Cancer Biology, 2012, 22, 23-32. | 4.3 | 179 | | 144 | Targeting death-inducing receptors in cancer therapy. Oncogene, 2007, 26, 3745-3757. | 2.6 | 178 | | # | Article | IF | CITATIONS | |-----|---|-----|-----------| | 145 | Granzyme B Expression by CD8+ T Cells Is Required for the Development of Experimental Cerebral Malaria. Journal of Immunology, 2011, 186, 6148-6156. | 0.4 | 178 | | 146 | CD73-Deficient Mice Are Resistant to Carcinogenesis. Cancer Research, 2012, 72, 2190-2196. | 0.4 | 178 | | 147 | Regulation of Carcinogenesis by IL-5 and CCL11: A Potential Role for Eosinophils in Tumor Immune Surveillance. Journal of Immunology, 2007, 178, 4222-4229. | 0.4 | 176 | | 148 | Targeting CD39 in Cancer Reveals an Extracellular ATP- and Inflammasome-Driven Tumor Immunity. Cancer Discovery, 2019, 9, 1754-1773. | 7.7 | 173 | | 149 | Activation of human peripheral blood T lymphocytes by pharmacological induction of protein-tyrosine phosphorylation Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 10306-10310. | 3.3 | 172 | | 150 | Molecular Pathways: Targeting CD96 and TIGIT for Cancer Immunotherapy. Clinical Cancer Research, 2016, 22, 5183-5188. | 3.2 | 171 | | 151 | Predictors of responses to immune checkpoint blockade in advanced melanoma. Nature Communications, 2017, 8, 592. | 5.8 | 166 | | 152 | Single-chain antigen recognition receptors that costimulate potent rejection of established experimental tumors. Blood, 2002, 100, 3155-3163. | 0.6 | 165 | | 153 | Conditional Regulatory T-Cell Depletion Releases Adaptive Immunity Preventing Carcinogenesis and Suppressing Established Tumor Growth. Cancer Research, 2010, 70, 7800-7809. | 0.4 | 165 | | 154 | NKT Cell Stimulation with Glycolipid Antigen In Vivo: Costimulation-Dependent Expansion, Bim-Dependent Contraction, and Hyporesponsiveness to Further Antigenic Challenge. Journal of Immunology, 2005, 175, 3092-3101. | 0.4 | 163 | | 155 | Molecular mechanisms of natural killer cell activation in response to cellular stress. Cell Death and Differentiation, 2014, 21, 5-14. | 5.0 | 163 | | 156 | Dysregulated IL-18 Is a Key Driver of Immunosuppression and a Possible Therapeutic Target in the Multiple Myeloma Microenvironment. Cancer Cell, 2018, 33, 634-648.e5. | 7.7 | 163 | | 157 | NKG2D Recognition and Perforin Effector Function Mediate Effective Cytokine Immunotherapy of Cancer. Journal of Experimental Medicine, 2004, 200, 1325-1335. | 4.2 | 161 | | 158 | Sustained Type I interferon signaling as a mechanism of resistance to PD-1 blockade. Cell Research, 2019, 29,
846-861. | 5.7 | 160 | | 159 | NLRP3 Suppresses NK Cell–Mediated Responses to Carcinogen-Induced Tumors and Metastases. Cancer Research, 2012, 72, 5721-5732. | 0.4 | 159 | | 160 | DNAM-1/CD155 Interactions Promote Cytokine and NK Cell-Mediated Suppression of Poorly Immunogenic Melanoma Metastases. Journal of Immunology, 2010, 184, 902-911. | 0.4 | 158 | | 161 | TRAIL+ NK Cells Control CD4+ T Cell Responses during Chronic Viral Infection to Limit Autoimmunity. Immunity, 2014, 41, 646-656. | 6.6 | 158 | | 162 | Sequential activation of NKT cells and NK cells provides effective innate immunotherapy of cancer. Journal of Experimental Medicine, 2005, 201, 1973-1985. | 4.2 | 157 | | # | Article | IF | CITATIONS | |-----|---|------|-----------| | 163 | Cutting Edge: Tumor Rejection Mediated by NKG2D Receptor-Ligand Interaction Is Dependent upon Perforin. Journal of Immunology, 2002, 169, 5377-5381. | 0.4 | 156 | | 164 | Innate immunodeficiency following genetic ablation of Mcl1 in natural killer cells. Nature Communications, 2014, 5, 4539. | 5.8 | 156 | | 165 | Cutting Edge: TRAIL Deficiency Accelerates Hematological Malignancies. Journal of Immunology, 2005, 175, 5586-5590. | 0.4 | 154 | | 166 | Cutting Edge: IL-21 Is Not Essential for Th17 Differentiation or Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2008, 180, 7097-7101. | 0.4 | 154 | | 167 | BK Polyomavirus: Clinical Aspects, Immune Regulation, and Emerging Therapies. Clinical Microbiology Reviews, 2017, 30, 503-528. | 5.7 | 154 | | 168 | The immunostimulatory effect of lenalidomide on NK-cell function is profoundly inhibited by concurrent dexamethasone therapy. Blood, 2011, 117, 1605-1613. | 0.6 | 152 | | 169 | Â-Galactosylceramide (KRN7000) suppression of chemical- and oncogene-dependent carcinogenesis.
Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9464-9469. | 3.3 | 146 | | 170 | Anticancer immunotherapy by CTLA-4 blockade: obligatory contribution of IL-2 receptors and negative prognostic impact of soluble CD25. Cell Research, 2015, 25, 208-224. | 5.7 | 143 | | 171 | Involvement of Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand in NK Cell-Mediated and IFN-Î ³ -Dependent Suppression of Subcutaneous Tumor Growth. Cellular Immunology, 2001, 214, 194-200. | 1.4 | 142 | | 172 | IFN-gamma-mediated inhibition of tumor angiogenesis by natural killer T-cell ligand, alpha-galactosylceramide. Blood, 2002, 100, 1728-33. | 0.6 | 140 | | 173 | Stem cell mobilization with G-CSF induces type 17 differentiation and promotes scleroderma. Blood, 2010, 116, 819-828. | 0.6 | 139 | | 174 | Supernatural T cells: genetic modification of T cells for cancer therapy. Nature Reviews Immunology, 2005, 5, 928-940. | 10.6 | 137 | | 175 | Adoptive transfer of T cells modified with a humanized chimeric receptor gene inhibits growth of Lewis-Y-expressing tumors in mice. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 19051-19056. | 3.3 | 136 | | 176 | Efficient Nuclear Targeting of Granzyme B and the Nuclear Consequences of Apoptosis Induced by Granzyme B and Perforin Are Caspase-dependent, but Cell Death Is Caspase-independent. Journal of Biological Chemistry, 1998, 273, 27934-27938. | 1.6 | 135 | | 177 | Perforin and Granzymes Have Distinct Roles in Defensive Immunity and Immunopathology. Immunity, 2006, 25, 835-848. | 6.6 | 134 | | 178 | A role for Blimp1 in the transcriptional network controlling natural killer cell maturation. Blood, 2011, 117, 1869-1879. | 0.6 | 134 | | 179 | Cytometric and functional analyses of NK and NKT cell deficiencies in NOD mice. International Immunology, 2001, 13, 887-896. | 1.8 | 133 | | 180 | Interleukin-21-Producing CD4+ T Cells Promote Type 2 Immunity to House Dust Mites. Immunity, 2015, 43, 318-330. | 6.6 | 132 | | # | Article | IF | CITATIONS | |-----|---|------|-----------| | 181 | Calcium-dependent Plasma Membrane Binding and Cell Lysis by Perforin Are Mediated through Its C2
Domain. Journal of Biological Chemistry, 2005, 280, 8426-8434. | 1.6 | 131 | | 182 | BET inhibition blocks inflammation-induced cardiac dysfunction and SARS-CoV-2 infection. Cell, 2021, 184, 2167-2182.e22. | 13.5 | 131 | | 183 | Adenosine 2B Receptor Expression on Cancer Cells Promotes Metastasis. Cancer Research, 2016, 76, 4372-4382. | 0.4 | 130 | | 184 | Combination therapy of established cancer using a histone deacetylase inhibitor and a TRAIL receptor agonist. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11317-11322. | 3.3 | 129 | | 185 | The Promise of Neoadjuvant Immunotherapy and Surgery for Cancer Treatment. Clinical Cancer Research, 2019, 25, 5743-5751. | 3.2 | 129 | | 186 | Fatal Hepatitis Mediated by Tumor Necrosis Factor TNFα Requires Caspase-8 and Involves the BH3-Only Proteins Bid and Bim. Immunity, 2009, 30, 56-66. | 6.6 | 128 | | 187 | Functional dissection of the granzyme family: cell death and inflammation. Immunological Reviews, 2010, 235, 73-92. | 2.8 | 128 | | 188 | Targeting cancerâ€related inflammation in the era of immunotherapy. Immunology and Cell Biology, 2017, 95, 325-332. | 1.0 | 128 | | 189 | Proapoptotic functions of cytotoxic lymphocyte granule constituents in vitro and in vivo. Current Opinion in Immunology, 2000, 12, 323-329. | 2.4 | 127 | | 190 | Improving cancer immunotherapy by targeting tumor-induced immune suppression. Cancer and Metastasis Reviews, 2011, 30, 125-140. | 2.7 | 127 | | 191 | An Essential Role for Tumor Necrosis Factor in Natural Killer Cell–mediated Tumor Rejection in the Peritoneum. Journal of Experimental Medicine, 1998, 188, 1611-1619. | 4.2 | 126 | | 192 | MAPK Signaling and Inflammation Link Melanoma Phenotype Switching to Induction of CD73 during Immunotherapy. Cancer Research, 2017, 77, 4697-4709. | 0.4 | 126 | | 193 | Redirecting Mouse CTL Against Colon Carcinoma: Superior Signaling Efficacy of Single-Chain Variable
Domain Chimeras Containing TCR-ζ vs FcεRI-γ. Journal of Immunology, 2001, 166, 182-187. | 0.4 | 125 | | 194 | IFN- \hat{l}^3 is required for cytotoxic T cell-dependent cancer genome immunoediting. Nature Communications, 2017, 8, 14607. | 5.8 | 125 | | 195 | Death receptor 5 mediated-apoptosis contributes to cholestatic liver disease. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10895-10900. | 3.3 | 124 | | 196 | Activation of Natural Killer (NK) T Cells during Murine Cytomegalovirus Infection Enhances the Antiviral Response Mediated by NK Cells. Journal of Virology, 2003, 77, 1877-1884. | 1.5 | 123 | | 197 | Apoptosis induced by the lymphocyte effector molecule perforin. Current Opinion in Immunology, 2007, 19, 339-347. | 2.4 | 123 | | 198 | Tumor-Specific CTL Kill Murine Renal Cancer Cells Using Both Perforin and Fas Ligand-Mediated Lysis In Vitro, But Cause Tumor Regression In Vivo in the Absence of Perforin. Journal of Immunology, 2002, 168, 3484-3492. | 0.4 | 121 | | # | Article | IF | CITATIONS | |-----|---|--------------|-----------| | 199 | IL-21 Enhances Tumor Rejection through a NKG2D-Dependent Mechanism. Journal of Immunology, 2005, 175, 2167-2173. | 0.4 | 121 | | 200 | Consensus nomenclature for CD8 ⁺ T cell phenotypes in cancer. Oncolmmunology, 2015, 4, e998538. | 2.1 | 119 | | 201 | Myeloma escape after stem cell transplantation is a consequence of T-cell exhaustion and is prevented by TIGIT blockade. Blood, 2018, 132, 1675-1688. | 0.6 | 119 | | 202 | CCL2/CCR2-Dependent Recruitment of Functional Antigen-Presenting Cells into Tumors upon Chemotherapy. Cancer Research, 2014, 74, 436-445. | 0.4 | 118 | | 203 | Regulation of lymphokine-activated killer activity and pore-forming protein gene expression in human peripheral blood CD8+ T lymphocytes. Inhibition by transforming growth factor-beta. Journal of Immunology, 1991, 146, 3289-97. | 0.4 | 118 | | 204 | Asymmetric Cell Division of T Cells upon Antigen Presentation Uses Multiple Conserved Mechanisms. Journal of Immunology, 2010, 185, 367-375. | 0.4 | 117 | | 205 | CCR2 defines in vivo development and homing of IL-23-driven GM-CSF-producing Th17 cells. Nature Communications, 2015, 6, 8644. | 5 . 8 | 117 | | 206 | IL-23 suppresses innate immune response independently of IL-17A during carcinogenesis and metastasis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8328-8333. | 3.3 | 116 | | 207 | DNAMâ€1 control of natural killer cells functions through nectin and nectinâ€like proteins. Immunology and Cell Biology, 2014, 92, 237-244. | 1.0 | 115 | | 208 | NKT cell-dependent leukemia eradication following stem cell mobilization with potent G-CSF analogs. Journal of Clinical Investigation, 2005, 115, 3093-3103. | 3.9 | 114 | | 209 | Granzyme M Mediates a Novel Form of Perforin-dependent Cell Death. Journal of Biological Chemistry, 2004, 279, 22236-22242. | 1.6 | 113 | | 210 | Critical link between TRAIL and CCL20 for the activation of TH2 cells and the expression of allergic airway disease. Nature Medicine, 2007, 13, 1308-1315. | 15.2 | 112 | | 211 | An Intact Immune System Is Required for the Anticancer Activities of Histone Deacetylase Inhibitors. Cancer Research, 2013, 73, 7265-7276. | 0.4 | 112 | | 212 | Tissues
in Different Anatomical Sites Can Sculpt and Vary the Tumor Microenvironment to Affect Responses to Therapy. Molecular Therapy, 2014, 22, 18-27. | 3.7 | 112 | | 213 | Prospects for TIM3-Targeted Antitumor Immunotherapy. Cancer Research, 2011, 71, 6567-6571. | 0.4 | 111 | | 214 | Differential Requirement for Nfil3 during NK Cell Development. Journal of Immunology, 2014, 192, 2667-2676. | 0.4 | 111 | | 215 | Immunosurveillance and therapy of multiple myeloma are CD226 dependent. Journal of Clinical Investigation, 2015, 125, 2077-2089. | 3.9 | 111 | | 216 | DNAM-1 Expression Marks an Alternative Program of NK Cell Maturation. Cell Reports, 2015, 11, 85-97. | 2.9 | 111 | | # | Article | IF | CITATIONS | |-----|---|--------------|-----------| | 217 | The Interactions of Multiple Cytokines Control NK Cell Maturation. Journal of Immunology, 2010, 185, 6679-6688. | 0.4 | 110 | | 218 | The NK cell granule protein NKG7 regulates cytotoxic granule exocytosis and inflammation. Nature Immunology, 2020, 21, 1205-1218. | 7.0 | 110 | | 219 | Interleukin 2 induction of pore-forming protein gene expression in human peripheral blood CD8+ T cells Journal of Experimental Medicine, 1990, 171, 1269-1281. | 4.2 | 109 | | 220 | Constitutive expression of pore-forming protein in peripheral blood gamma/delta T cells: implication for their cytotoxic role in vivo Journal of Experimental Medicine, 1990, 172, 1877-1880. | 4.2 | 108 | | 221 | Putative IKDCs are functionally and developmentally similar to natural killer cells, but not to dendritic cells. Journal of Experimental Medicine, 2007, 204, 2579-2590. | 4.2 | 108 | | 222 | A role for CCL2 in both tumor progression and immunosurveillance. Oncolmmunology, 2013, 2, e25474. | 2.1 | 108 | | 223 | A Role for P-Glycoprotein in Regulating Cell Death. Leukemia and Lymphoma, 2000, 38, 1-11. | 0.6 | 105 | | 224 | The Influence of CD1d in Postselection NKT Cell Maturation and Homeostasis. Journal of Immunology, 2005, 175, 3762-3768. | 0.4 | 105 | | 225 | A structural basis for selection and cross-species reactivity of the semi-invariant NKT cell receptor in CD1d/glycolipid recognition. Journal of Experimental Medicine, 2006, 203, 661-673. | 4.2 | 105 | | 226 | Gene-modified T cells as immunotherapy for multiple myeloma and acute myeloid leukemia expressing the Lewis Y antigen. Gene Therapy, 2010, 17, 678-686. | 2.3 | 105 | | 227 | G9a drives hypoxia-mediated gene repression for breast cancer cell survival and tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7077-7082. | 3.3 | 105 | | 228 | ATP and cancer immunosurveillance. EMBO Journal, 2021, 40, e108130. | 3 . 5 | 105 | | 229 | Nonredundant roles of antibody, cytokines, and perforin in the eradication of established Her-2/neu carcinomas. Journal of Clinical Investigation, 2003, 111, 1161-1170. | 3.9 | 105 | | 230 | Unlocking the secrets of cytotoxic granule proteins. Journal of Leukocyte Biology, 2001, 70, 18-29. | 1.5 | 104 | | 231 | Immunogenic anti-cancer chemotherapy as an emerging concept. Current Opinion in Immunology, 2008, 20, 545-557. | 2.4 | 101 | | 232 | The Helix-Loop-Helix Protein ID2 Governs NK Cell Fate by Tuning Their Sensitivity to Interleukin-15. Immunity, 2016, 44, 103-115. | 6.6 | 101 | | 233 | MAIT Cells Promote Tumor Initiation, Growth, and Metastases via Tumor MR1. Cancer Discovery, 2020, 10, 124-141. | 7.7 | 101 | | 234 | Adoptive transfer of gene-engineered CD4+ helper T cells induces potent primary and secondary tumor rejection. Blood, 2005, 106, 2995-3003. | 0.6 | 100 | | # | Article | IF | CITATIONS | |-----|--|-----|-----------| | 235 | Limited correlation between human thymus and blood NKT?cell content revealed by an ontogeny study of paired tissue samples. European Journal of Immunology, 2005, 35, 1399-1407. | 1.6 | 100 | | 236 | Immune responses in multiple myeloma: role of the natural immune surveillance and potential of immunotherapies. Cellular and Molecular Life Sciences, 2016, 73, 1569-1589. | 2.4 | 100 | | 237 | Type I natural killer T cells suppress tumors caused by p53 loss in mice. Blood, 2009, 113, 6382-6385. | 0.6 | 99 | | 238 | TRF2 inhibits a cell-extrinsic pathway through which natural killer cells eliminate cancer cells. Nature Cell Biology, 2013, 15, 818-828. | 4.6 | 99 | | 239 | Interleukin 2 Receptor Signaling Regulates the Perforin Gene through Signal Transducer and Activator of Transcription (Stat)5 Activation of Two Enhancers. Journal of Experimental Medicine, 1999, 190, 1297-1308. | 4.2 | 98 | | 240 | Eradication of solid tumors using histone deacetylase inhibitors combined with immune-stimulating antibodies. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4141-4146. | 3.3 | 98 | | 241 | A balance of interleukin-12 and -23 in cancer. Trends in Immunology, 2013, 34, 548-555. | 2.9 | 98 | | 242 | Tc17 cells are a proinflammatory, plastic lineage of pathogenic CD8+ T cells that induce GVHD without antileukemic effects. Blood, 2015, 126, 1609-1620. | 0.6 | 98 | | 243 | Interleukin-12 from CD103+ Batf3-Dependent Dendritic Cells Required for NK-Cell Suppression of Metastasis. Cancer Immunology Research, 2017, 5, 1098-1108. | 1.6 | 98 | | 244 | Localization of Granzyme B in the Nucleus. Journal of Biological Chemistry, 1996, 271, 4127-4133. | 1.6 | 97 | | 245 | NK cells and NKT cells collaborate in host protection from methylcholanthrene-induced fibrosarcoma. International Immunology, 2008, 20, 631-631. | 1.8 | 97 | | 246 | A semi-invariant Vα10+ T cell antigen receptor defines a population of natural killer T cells with distinct glycolipid antigen–recognition properties. Nature Immunology, 2011, 12, 616-623. | 7.0 | 97 | | 247 | Rejection of Syngeneic Colon Carcinoma by CTLs Expressing Single-Chain Antibody Receptors Codelivering CD28 Costimulation. Journal of Immunology, 2002, 169, 5780-5786. | 0.4 | 96 | | 248 | Natural Killer Cells Are Essential for the Ability of BRAF Inhibitors to Control BRAFV600E-Mutant Metastatic Melanoma. Cancer Research, 2014, 74, 7298-7308. | 0.4 | 96 | | 249 | Long-Term Retention of Mature NK1.1+ NKT Cells in the Thymus. Journal of Immunology, 2006, 176, 4059-4065. | 0.4 | 95 | | 250 | Dual-specific Chimeric Antigen Receptor T Cells and an Indirect Vaccine Eradicate a Variety of Large Solid Tumors in an Immunocompetent, Self-antigen Setting. Clinical Cancer Research, 2017, 23, 2478-2490. | 3.2 | 95 | | 251 | Oncolytic Virus and Anti–4-1BB Combination Therapy Elicits Strong Antitumor Immunity against Established Cancer. Cancer Research, 2012, 72, 1651-1660. | 0.4 | 94 | | 252 | Interleukin (IL)-12 and IL-23 and Their Conflicting Roles in Cancer. Cold Spring Harbor Perspectives in Biology, 2018, 10, a028530. | 2.3 | 94 | | # | Article | IF | Citations | |-----|---|------|-----------| | 253 | Mutational analysis of P-glycoprotein: suppression of caspase activation in the absence of ATP-dependent drug efflux. Cell Death and Differentiation, 2004, 11, 1028-1037. | 5.0 | 93 | | 254 | The serine protease granzyme M is preferentially expressed in NK-cell, gamma delta T-cell, and intestinal T-cell lymphomas: evidence of origin from lymphocytes involved in innate immunity. Blood, 2003, 101, 3590-3593. | 0.6 | 92 | | 255 | Opposing Roles for IL-23 and IL-12 in Maintaining Occult Cancer in an Equilibrium State. Cancer Research, 2012, 72, 3987-3996. | 0.4 | 92 | | 256 | Blimp-1-Dependent IL-10 Production by Tr1 Cells Regulates TNF-Mediated Tissue Pathology. PLoS Pathogens, 2016, 12, e1005398. | 2.1 | 92 | | 257 | The Role of NK Cells in Autoimmune Disease. Autoimmunity, 2002, 35, 1-14. | 1.2 | 91 | | 258 | KHYG-1, a model for the study of enhanced natural killer cell cytotoxicity. Experimental Hematology, 2005, 33, 1160-1171. | 0.2 | 91 | | 259 | Differential lymphotoxin-? and interferon gamma signaling during mouse liver regeneration induced by chronic and acute injury. Hepatology, 2005, 41, 327-335. | 3.6 | 91 | | 260 | CD155 loss enhances tumor suppression via combined host and tumor-intrinsic mechanisms. Journal of Clinical Investigation, 2018, 128, 2613-2625. | 3.9 | 91 | | 261 | Harnessing the immune system in acute myeloid leukaemia. Critical Reviews in Oncology/Hematology, 2016, 103, 62-77. | 2.0 | 90 | | 262 | CD73 Promotes Resistance to HER2/ErbB2 Antibody Therapy. Cancer Research, 2017, 77, 5652-5663. | 0.4 | 90 | | 263 | CTL granules: evolution of vesicles essential for combating virus infections. Trends in Immunology, 1999, 20, 351-356. | 7.5 | 89 | | 264 | Cross-talk between dendritic cells and natural killer cells in viral infection. Molecular Immunology, 2005, 42, 547-555. | 1.0 | 89 | | 265 | P-glycoprotein protects leukemia cells against caspase-dependent, but not caspase-independent, cell death. Blood, 1999, 93, 1075-85. | 0.6 | 89 | | 266 | The Restricted Expression of Granzyme M in Human Lymphocytes. Journal of Immunology, 2001, 166, 765-771. | 0.4 | 88 | | 267 | Interleukin 21: combination strategies for cancer therapy. Nature Reviews Drug Discovery, 2008, 7, 231-240. | 21.5 | 88 | | 268 | Receptors that interact with nectin and nectin-like proteins in the immunosurveillance and immunotherapy of cancer. Current Opinion in Immunology, 2012, 24, 246-251. | 2.4 | 88 | | 269 | Transforming growth factorâ€"β and Notch ligands act as opposing
environmental cues in regulating the plasticity of type 3 innate lymphoid cells. Science Signaling, 2016, 9, ra46. | 1.6 | 88 | | 270 | IL15 Stimulation with TIGIT Blockade Reverses CD155-mediated NK-Cell Dysfunction in Melanoma. Clinical Cancer Research, 2020, 26, 5520-5533. | 3.2 | 88 | | # | Article | IF | CITATIONS | |-----|--|-----|-----------| | 271 | Expression of recombinant human granzyme B. A processing and activation role for dipeptidyl peptidase I. Journal of Immunology, 1995, 154, 6299-305. | 0.4 | 88 | | 272 | Contribution of Thy1 $<$ sup $>+<$ /sup $>$ NK cells to protective IFN- \hat{I}^3 production during $<$ i $>>$ Salmonella $<$ (i $>>$ Typhimurium infections. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2252-2257. | 3.3 | 87 | | 273 | Cutting Edge: Granzymes A and B Are Not Essential for Perforin-Mediated Tumor Rejection. Journal of Immunology, 2003, 171, 515-518. | 0.4 | 86 | | 274 | Locally Administered TLR7 Agonists Drive Systemic Antitumor Immune Responses That Are Enhanced by Anti-CD40 Immunotherapy. Journal of Immunology, 2009, 182, 5217-5224. | 0.4 | 86 | | 275 | Donor colonic CD103+ dendritic cells determine the severity of acute graft-versus-host disease. Journal of Experimental Medicine, 2015, 212, 1303-1321. | 4.2 | 85 | | 276 | Tumor intrinsic and extrinsic immune functions of CD155. Seminars in Cancer Biology, 2020, 65, 189-196. | 4.3 | 85 | | 277 | Eomes-Dependent Loss of the Co-activating Receptor CD226 Restrains CD8+ T Cell Anti-tumor Functions and Limits the Efficacy of Cancer Immunotherapy. Immunity, 2020, 53, 824-839.e10. | 6.6 | 85 | | 278 | NK cell heparanase controls tumor invasion and immune surveillance. Journal of Clinical Investigation, 2017, 127, 2777-2788. | 3.9 | 85 | | 279 | Tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis is an important endogenous mechanism for resistance to liver metastases in murine renal cancer. Cancer Research, 2003, 63, 207-13. | 0.4 | 85 | | 280 | Cancer immunoediting and immune dysregulation in multiple myeloma. Blood, 2020, 136, 2731-2740. | 0.6 | 84 | | 281 | TNFâ€related apoptosisâ€inducing ligand as a therapeutic agent in autoimmunity and cancer. Immunology and Cell Biology, 2006, 84, 87-98. | 1.0 | 83 | | 282 | Treating Metastatic Solid Tumors With Bortezomib and a Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Receptor Agonist Antibody. Journal of the National Cancer Institute, 2008, 100, 649-662. | 3.0 | 83 | | 283 | Granzyme A and B-deficient killer lymphocytes are defective in eliciting DNA fragmentation but retain potentin vivo anti-tumor capacity. European Journal of Immunology, 2001, 31, 39-47. | 1.6 | 82 | | 284 | NK cells require IL-28R for optimal in vivo activity. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2376-84. | 3.3 | 82 | | 285 | Assessing Immune-Related Adverse Events of Efficacious Combination Immunotherapies in Preclinical Models of Cancer. Cancer Research, 2016, 76, 5288-5301. | 0.4 | 82 | | 286 | Cyclophosphamide Chemotherapy Sensitizes Tumor Cells to TRAIL-Dependent CD8 T Cell-Mediated Immune Attack Resulting in Suppression of Tumor Growth. PLoS ONE, 2009, 4, e6982. | 1.1 | 82 | | 287 | Targeting Adenosine in BRAF-Mutant Melanoma Reduces Tumor Growth and Metastasis. Cancer
Research, 2017, 77, 4684-4696. | 0.4 | 80 | | 288 | Granzymes: a variety of serine protease specificities encoded by genetically distinct subfamilies. Journal of Leukocyte Biology, 1996, 60, 555-562. | 1.5 | 79 | | # | Article | IF | Citations | |-----|---|------|-----------| | 289 | Redirected Perforin-Dependent Lysis of Colon Carcinoma by Ex Vivo Genetically Engineered CTL. Journal of Immunology, 2000, 164, 3705-3712. | 0.4 | 79 | | 290 | Fas ligand–mediated immune surveillance by T cells is essential for the control of spontaneous B cell lymphomas. Nature Medicine, 2014, 20, 283-290. | 15.2 | 79 | | 291 | CD96 Is an Immune Checkpoint That Regulates CD8+ T-cell Antitumor Function. Cancer Immunology Research, 2019, 7, 559-571. | 1.6 | 79 | | 292 | CD155 on Tumor Cells Drives Resistance to Immunotherapy by Inducing the Degradation of the Activating Receptor CD226 in CD8+ TÂCells. Immunity, 2020, 53, 805-823.e15. | 6.6 | 79 | | 293 | NKG2D and cytotoxic effector function in tumor immune surveillance. Seminars in Immunology, 2006, 18, 176-185. | 2.7 | 78 | | 294 | From cancer immunosurveillance to cancer immunotherapy. Immunological Reviews, 2007, 220, 82-101. | 2.8 | 78 | | 295 | IFN- \hat{l}^3 production by lung NK cells is critical for the natural resistance to pulmonary metastasis of B16 melanoma in mice. Journal of Leukocyte Biology, 2011, 90, 777-785. | 1.5 | 78 | | 296 | Gene-Engineered T Cells as a Superior Adjuvant Therapy for Metastatic Cancer. Journal of Immunology, 2004, 173, 2143-2150. | 0.4 | 77 | | 297 | Interleukin-21 Signaling: Functions in Cancer and Autoimmunity. Clinical Cancer Research, 2007, 13, 6926-6932. | 3.2 | 77 | | 298 | A Role for Granzyme M in TLR4-Driven Inflammation and Endotoxicosis. Journal of Immunology, 2010, 185, 1794-1803. | 0.4 | 77 | | 299 | Roles of the RANKL–RANK axis in antitumour immunity — implications for therapy. Nature Reviews Clinical Oncology, 2018, 15, 676-693. | 12.5 | 77 | | 300 | HMBA induces activation of a caspase-independent cell death pathway to overcome P-glycoprotein-mediated multidrug resistance. Blood, 2000, 95, 2378-2385. | 0.6 | 76 | | 301 | Combination Therapy of Established Tumors by Antibodies Targeting Immune Activating and Suppressing Molecules. Journal of Immunology, 2010, 184, 5493-5501. | 0.4 | 76 | | 302 | NK Cells and Cancer Immunoediting. Current Topics in Microbiology and Immunology, 2015, 395, 115-145. | 0.7 | 76 | | 303 | M144, a Murine Cytomegalovirus (Mcmv)-Encoded Major Histocompatibility Complex Class I
Homologue, Confers Tumor Resistance to Natural Killer Cell–Mediated Rejection. Journal of
Experimental Medicine, 1999, 190, 435-444. | 4.2 | 74 | | 304 | P-glycoprotein inhibits caspase-8 activation but not formation of the death inducing signal complex (disc) following Fas ligation. Cell Death and Differentiation, 2002, 9, 1266-1272. | 5.0 | 74 | | 305 | α-Galactosylceramide: Potential Immunomodulatory Activity and Future Application [General Articles]. Current Medicinal Chemistry, 2004, 11, 241-252. | 1.2 | 74 | | 306 | Adoptive immunotherapy combined with intratumoral TLR agonist delivery eradicates established melanoma in mice. Cancer Immunology, Immunotherapy, 2011, 60, 671-683. | 2.0 | 74 | | # | Article | IF | Citations | |-----|--|------|-----------| | 307 | NLRP3 promotes inflammationâ€induced skin cancer but is dispensable for asbestosâ€induced mesothelioma. Immunology and Cell Biology, 2012, 90, 983-986. | 1.0 | 74 | | 308 | The anticancer effects of HDAC inhibitors require the immune system. Oncolmmunology, 2014, 3, e27414. | 2.1 | 74 | | 309 | Agonistic CD40 mAb-Driven IL12 Reverses Resistance to Anti-PD1 in a T-cell–Rich Tumor. Cancer Research, 2016, 76, 6266-6277. | 0.4 | 74 | | 310 | Application of CD27 as a marker for distinguishing human NK cell subsets. International Immunology, 2008, 20, 625-630. | 1.8 | 73 | | 311 | Allergen-induced IL-6 trans-signaling activates $\hat{I}^3\hat{I}$ T cells to promote type 2 and type 17 airway inflammation. Journal of Allergy and Clinical Immunology, 2015, 136, 1065-1073. | 1.5 | 73 | | 312 | Suberoylanilide hydroxamic acid (SAHA) overcomes multidrug resistance and induces cell death in P-glycoprotein-expressing cells. International Journal of Cancer, 2002, 99, 292-298. | 2.3 | 72 | | 313 | Plasmodium Strain Determines Dendritic Cell Function Essential for Survival from Malaria. PLoS Pathogens, 2007, 3, e96. | 2.1 | 72 | | 314 | Cancer: Novel therapeutic strategies that exploit the TNF-related apoptosis-inducing ligand (TRAIL)/TRAIL receptor pathway. International Journal of Biochemistry and Cell Biology, 2007, 39, 280-286. | 1.2 | 72 | | 315 | Normal Thymocyte Negative Selection in TRAIL-deficient Mice. Journal of Experimental Medicine, 2003, 198, 491-496. | 4.2 | 71 | | 316 | Calreticulin exposure increases cancer immunogenicity. Nature Biotechnology, 2007, 25, 192-193. | 9.4 | 71 | | 317 | Bench to bedside: NK cells and control of metastasis. Clinical Immunology, 2017, 177, 50-59. | 1.4 | 71 | | 318 | Perforin-dependent nuclear entry of granzyme B precedes apoptosis, and is not a consequence of nuclear membrane dysfunction. Cell Death and Differentiation, 1998, 5, 488-496. | 5.0 | 70 | | 319 | Reversal in the Immunodominance Hierarchy in Secondary CD8+ T Cell Responses to Influenza A Virus: Roles for Cross-Presentation and Lysis-Independent Immunodomination. Journal of Immunology, 2004, 173, 5021-5027. | 0.4 | 70 | | 320 | Co-administration of RANKL and CTLA4 Antibodies Enhances Lymphocyte-Mediated Antitumor Immunity in Mice. Clinical Cancer Research, 2017, 23, 5789-5801. | 3.2 | 70 | | 321 | Timing of neoadjuvant immunotherapy in relation to surgery is crucial for outcome.
Oncolmmunology, 2019, 8, e1581530. | 2.1 | 69 | | 322 | The role of natural killer cells in tumor control—effectors and regulators of adaptive immunity. Seminars in Immunopathology, 2005, 27, 49-64. | 4.0
| 68 | | 323 | SnapShot: Extrinsic Apoptosis Pathways. Cell, 2010, 143, 1192-1192.e2. | 13.5 | 68 | | 324 | CD3 ^{bright} signals on γδT cells identify ILâ€17Aâ€producing Vγ6Vδ1 ⁺ T cells. Immunology and Cell Biology, 2015, 93, 198-212. | 1.0 | 68 | | # | Article | IF | CITATIONS | |-----|--|------|-----------| | 325 | NK cells and apoptosis. Immunology and Cell Biology, 1999, 77, 64-75. | 1.0 | 67 | | 326 | The Functional Basis for Hemophagocytic Lymphohistiocytosis in a Patient with Co-inherited Missense Mutations in the Perforin (PFN1) Gene. Journal of Experimental Medicine, 2004, 200, 811-816. | 4.2 | 67 | | 327 | Multiple Antitumor Mechanisms Downstream of Prophylactic Regulatory T-Cell Depletion. Cancer Research, 2010, 70, 2665-2674. | 0.4 | 67 | | 328 | NKT cell adjuvant-based tumor vaccine for treatment of myc oncogene-driven mouse B-cell lymphoma. Blood, 2012, 120, 3019-3029. | 0.6 | 67 | | 329 | Peripheral natural killer cell maturation depends on the transcription factor Aiolos. EMBO Journal, 2014, 33, 2721-2734. | 3.5 | 67 | | 330 | RANKL blockade improves efficacy of PD1-PD-L1 blockade or dual PD1-PD-L1 and CTLA4 blockade in mouse models of cancer. Oncolmmunology, 2018, 7, e1431088. | 2.1 | 67 | | 331 | Functional Analysis of Granzyme M and Its Role in Immunity to Infection. Journal of Immunology, 2005, 175, 3235-3243. | 0.4 | 66 | | 332 | Targeting immune checkpoints in hematological malignancies. Journal of Hematology and Oncology, 2020, 13, 111. | 6.9 | 66 | | 333 | CD1-Restricted T Cells and Tumor Immunity. , 2007, 314, 293-323. | | 66 | | 334 | Combination Anti-CTLA-4 and Anti-RANKL in Metastatic Melanoma. Journal of Clinical Oncology, 2016, 34, e104-e106. | 0.8 | 65 | | 335 | Immunopurification of Functional Asp-ase (Natural Killer Cell Granzyme B) Using a Monoclonal Antibody. Biochemical and Biophysical Research Communications, 1993, 195, 910-920. | 1.0 | 64 | | 336 | Combined Natural Killer T-Cell–Based Immunotherapy Eradicates Established Tumors in Mice. Cancer Research, 2007, 67, 7495-7504. | 0.4 | 64 | | 337 | Induction of natural killer T cell–dependent alloreactivity by administration of granulocyte colony–stimulating factor after bone marrow transplantation. Nature Medicine, 2009, 15, 436-441. | 15.2 | 64 | | 338 | Improved mouse models to assess tumour immunity and irAEs after combination cancer immunotherapies. Clinical and Translational Immunology, 2014, 3, e22. | 1.7 | 64 | | 339 | The role of NK cells and CD39 in the immunological control of tumor metastases. Oncolmmunology, 2019, 8, e1593809. | 2.1 | 64 | | 340 | Hypoxia-driven immunosuppression contributes to the pre-metastatic niche. Oncolmmunology, 2013, 2, e22355. | 2.1 | 63 | | 341 | Immunoregulation in cancer-bearing hosts. Down-regulation of gene expression and cytotoxic function in CD8+ T cells. Journal of Immunology, 1992, 149, 949-56. | 0.4 | 63 | | 342 | A Role for IFN- \hat{l}^3 in Primary and Secondary Immunity Generated by NK Cell-Sensitive Tumor-Expressing CD80 In Vivo. Journal of Immunology, 2002, 168, 4472-4479. | 0.4 | 62 | | # | Article | IF | Citations | |-----|--|-----|-----------| | 343 | Adoptive Transfer of Gene-Modified Primary NK Cells Can Specifically Inhibit Tumor Progression In Vivo. Journal of Immunology, 2008, 181, 3449-3455. | 0.4 | 62 | | 344 | The Relative Role of Lymphocyte Granule Exocytosis versus Death Receptor-Mediated Cytotoxicity in Viral Pathophysiology. Journal of Virology, 1998, 72, 1-9. | 1.5 | 62 | | 345 | TNFâ€related apoptosisâ€inducing ligand (TRAIL)/Apo2L suppresses experimental autoimmune encephalomyelitis in mice. Immunology and Cell Biology, 2005, 83, 511-519. | 1.0 | 61 | | 346 | Perioperative, Spatiotemporally Coordinated Activation of T and NK Cells Prevents Recurrence of Pancreatic Cancer. Cancer Research, 2018, 78, 475-488. | 0.4 | 61 | | 347 | Peripheral NK1.1â^' NKT Cells Are Mature and Functionally Distinct from Their Thymic Counterparts. Journal of Immunology, 2007, 179, 6630-6637. | 0.4 | 60 | | 348 | Multiple functions of CXCL12 in a syngeneic model of breast cancer. Molecular Cancer, 2010, 9, 250. | 7.9 | 60 | | 349 | Control of Metastases via Myeloid CD39 and NK Cell Effector Function. Cancer Immunology Research, 2020, 8, 356-367. | 1.6 | 60 | | 350 | Sustained Antigen-Specific Antitumor Recall Response Mediated by Gene-Modified CD4+ T Helper-1 and CD8+ T Cells. Cancer Research, 2007, 67, 11428-11437. | 0.4 | 59 | | 351 | CD4 ⁺ Natural Killer T Cells Potently Augment Aortic Root Atherosclerosis by Perforinand Granzyme B-Dependent Cytotoxicity. Circulation Research, 2015, 116, 245-254. | 2.0 | 59 | | 352 | Acquired resistance to anti-PD1 therapy: checkmate to checkpoint blockade?. Genome Medicine, 2016, 8, 111. | 3.6 | 59 | | 353 | IL-2 and IL-6 synergize to augment the pore-forming protein gene expression and cytotoxic potential of human peripheral blood T cells. Journal of Immunology, 1990, 145, 1159-66. | 0.4 | 59 | | 354 | The mTORC1 Inhibitor Everolimus Prevents and Treats $\hat{E1}/4$ - <i>Myc</i> Lymphoma by Restoring Oncogene-Induced Senescence. Cancer Discovery, 2013, 3, 82-95. | 7.7 | 58 | | 355 | Radiotherapy Complements Immune Checkpoint Blockade. Cancer Cell, 2015, 27, 437-438. | 7.7 | 58 | | 356 | Expression in cytotoxic T lymphocytes of a single-chain anti-carcinoembryonic antigen antibody. Redirected Fas ligand-mediated lysis of colon carcinoma. European Journal of Immunology, 1998, 28, 1663-1672. | 1.6 | 57 | | 357 | Intrathymic NKT cell development is blocked by the presence of α-galactosylceramide. European Journal of Immunology, 2003, 33, 1816-1823. | 1.6 | 56 | | 358 | IFN-Â-mediated negative feedback regulation of NKT-cell function by CD94/NKG2. Blood, 2005, 106, 184-192. | 0.6 | 56 | | 359 | The Lewis-Y Carbohydrate Antigen is Expressed by Many Human Tumors and Can Serve as a Target for Genetically Redirected T cells Despite the Presence of Soluble Antigen in Serum. Journal of Immunotherapy, 2009, 32, 292-301. | 1.2 | 56 | | 360 | Dietary <i>Lactobacillus</i> -Derived Exopolysaccharide Enhances Immune-Checkpoint Blockade Therapy. Cancer Discovery, 2022, 12, 1336-1355. | 7.7 | 56 | | # | Article | IF | CITATIONS | |-----|---|-----|-----------| | 361 | Tumor Necrosis Factor Sustains the Generalized Lymphoproliferative Disorder (gld) Phenotype. Journal of Experimental Medicine, 2000, 191, 89-96. | 4.2 | 55 | | 362 | A functional role for CD28 costimulation in tumor recognition by single-chain receptor-modified T cells. Cancer Gene Therapy, 2004, 11 , $371-379$. | 2.2 | 55 | | 363 | Innate Immune Recognition and Suppression of Tumors. Advances in Cancer Research, 2006, 95, 293-322. | 1.9 | 55 | | 364 | IFN-Î ³ -Dependent Recruitment of Mature CD27high NK Cells to Lymph Nodes Primed by Dendritic Cells. Journal of Immunology, 2008, 181, 5323-5330. | 0.4 | 55 | | 365 | Regulation of antitumour immunity by CD1d-restricted NKT cells. Immunology and Cell Biology, 2004, 82, 323-331. | 1.0 | 54 | | 366 | Immune response to RB1-regulated senescence limits radiation-induced osteosarcoma formation. Journal of Clinical Investigation, 2013, 123, 5351-5360. | 3.9 | 54 | | 367 | Activation of Invariant NKT Cells Exacerbates Experimental Visceral Leishmaniasis. PLoS Pathogens, 2008, 4, e1000028. | 2.1 | 53 | | 368 | Targeting cytokine signaling checkpoint CIS activates NK cells to protect from tumor initiation and metastasis. Oncolmmunology, 2017, 6, e1267892. | 2.1 | 53 | | 369 | Tumor CD155 Expression Is Associated with Resistance to Anti-PD1 Immunotherapy in Metastatic Melanoma. Clinical Cancer Research, 2020, 26, 3671-3681. | 3.2 | 53 | | 370 | Frizzled-7 receptor ectodomain expression in a colon cancer cell line induces morphological change and attenuates tumor growth. Differentiation, 2005, 73, 142-153. | 1.0 | 52 | | 371 | Targeting Vascular Endothelial-Cadherin in Tumor-Associated Blood Vessels Promotes
T-cell–Mediated Immunotherapy. Cancer Research, 2017, 77, 4434-4447. | 0.4 | 52 | | 372 | IFNAR1-Signalling Obstructs ICOS-mediated Humoral Immunity during Non-lethal Blood-Stage Plasmodium Infection. PLoS Pathogens, 2016, 12, e1005999. | 2.1 | 52 | | 373 | The roles of interferonâ€Î³ and perforin in antiviral immunity in mice that differ in genetically determined NKâ€cellâ€mediated antiviral activity. Immunology and Cell Biology, 2009, 87, 559-566. | 1.0 | 51 | | 374 | Mechanistic studies of transforming growth factor-beta inhibition of IL-2-dependent activation of CD3- large granular lymphocyte functions. Regulation of IL-2R beta (p75) signal transduction. Journal of Immunology, 1991, 146, 3791-8. | 0.4 | 51 | | 375 | Pharmacological targeting of the transcription factor SOX18 delays breast cancer in mice. ELife, 2017, 6, . | 2.8 | 50 | | 376 | IL-7 regulation of cytotoxic lymphocytes: Pore-forming protein gene expression, interferon- \hat{l}^3 production, and cytotoxicity of human peripheral blood lymphocyte subsets. Cellular Immunology, 1991, 138, 390-403. | 1.4 | 49 | | 377 | Systemic NKT cell deficiency in NOD mice is not detected in peripheral blood: implications for human studies. Immunology and Cell Biology, 2004, 82, 247-252. | 1.0 | 49 | | 378 | CD11c+ Dendritic Cells and B Cells Contribute to the Tumoricidal Activity of Anti-DR5 Antibody Therapy in Established Tumors. Journal of Immunology, 2010,
185, 532-541. | 0.4 | 49 | | # | Article | IF | CITATIONS | |-----|--|-----|-----------| | 379 | Tumor Ablation by Gene-Modified T Cells in the Absence of Autoimmunity. Cancer Research, 2010, 70, 9591-9598. | 0.4 | 49 | | 380 | Recognition of the nonclassical MHC class I molecule H2-M3 by the receptor Ly49A regulates the licensing and activation of NK cells. Nature Immunology, 2012, 13, 1171-1177. | 7.0 | 49 | | 381 | Bone marrow transplantation generates T cell–dependent control of myeloma in mice. Journal of Clinical Investigation, 2018, 129, 106-121. | 3.9 | 49 | | 382 | Role of TNF in lymphocyte-mediated cytotoxicity. Microscopy Research and Technique, 2000, 50, 196-208. | 1.2 | 48 | | 383 | An observational study of concomitant immunotherapies and denosumab in patients with advanced melanoma or lung cancer. Oncolmmunology, 2018, 7, e1480301. | 2.1 | 48 | | 384 | Met-ase: cloning and distinct chromosomal location of a serine protease preferentially expressed in human natural killer cells. Journal of Immunology, 1993, 151, 6195-205. | 0.4 | 48 | | 385 | Dependence of granzyme B-mediated cell death on a pathway regulated by Bcl-2 or its viral homolog, BHRF1. Cell Death and Differentiation, 2000, 7, 973-983. | 5.0 | 47 | | 386 | Promoting regulation via the inhibition of DNAM-1 after transplantation. Blood, 2013, 121, 3511-3520. | 0.6 | 47 | | 387 | Natural killer receptor ligand expression on acute myeloid leukemia impacts survival and relapse after chemotherapy. Blood Advances, 2018, 2, 335-346. | 2.5 | 47 | | 388 | Anti-IL-23 Monoclonal Antibody Synergizes in Combination with Targeted Therapies or IL-2 to Suppress Tumor Growth and Metastases. Cancer Research, 2011, 71, 2077-2086. | 0.4 | 46 | | 389 | Deficiency of host CD96 and PD-1 or TIGIT enhances tumor immunity without significantly compromising immune homeostasis. Oncolmmunology, 2018, 7, e1445949. | 2.1 | 46 | | 390 | Immunotherapy of Cancer Using Systemically Delivered Gene-Modified Human T Lymphocytes. Human Gene Therapy, 2004, 15, 699-708. | 1.4 | 45 | | 391 | NK cells contribute to the early clearance of HSV-1 from the lung but cannot control replication in the central nervous system following intranasal infection. European Journal of Immunology, 2006, 36, 897-905. | 1.6 | 45 | | 392 | Host Perforin Reduces Tumor Number but Does Not Increase Survival in Oncogene-Driven Mammary Adenocarcinoma. Cancer Research, 2007, 67, 5454-5460. | 0.4 | 45 | | 393 | Antibodies targeted to TRAIL receptor-2 and ErbB-2 synergize in vivo and induce an antitumor immune response. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16254-16259. | 3.3 | 45 | | 394 | Cutting Edge: Novel Priming of Tumor-Specific Immunity by NKG2D-Triggered NK Cell-Mediated Tumor Rejection and Th1-Independent CD4+ T Cell Pathway. Journal of Immunology, 2004, 172, 757-761. | 0.4 | 44 | | 395 | Role of γδT Cells in α-Galactosylceramide–Mediated Immunity. Journal of Immunology, 2012, 188, 3928-3939. | 0.4 | 44 | | 396 | CD96 targeted antibodies need not block CD96-CD155 interactions to promote NK cell anti-metastatic activity. Oncolmmunology, 2018, 7, e1424677. | 2.1 | 44 | | # | Article | IF | CITATIONS | |-----|--|-------------|-----------| | 397 | Cancer vaccines for established cancer: how to make them better?. Immunological Reviews, 2008, 222, 242-255. | 2.8 | 43 | | 398 | Transient Foxp3 ⁺ regulatory Tâ€cell depletion enhances therapeutic anticancer vaccination targeting the immuneâ€stimulatory properties of NKT cells. Immunology and Cell Biology, 2013, 91, 105-114. | 1.0 | 43 | | 399 | Purification and cloning of a novel serine protease, RNK-Met-1, from the granules of a rat natural killer cell leukemia. Journal of Biological Chemistry, 1992, 267, 24418-25. | 1.6 | 43 | | 400 | Antigen-induced tolerance by intrathymic modulation of self-recognizing inhibitory receptors. Nature Immunology, 2004, 5, 590-596. | 7. 0 | 42 | | 401 | Batf3 ⁺ DCs and type I IFN are critical for the efficacy of neoadjuvant cancer immunotherapy. Oncolmmunology, 2019, 8, e1546068. | 2.1 | 42 | | 402 | Inhibition of early tumor growth requires J alpha 18-positive (natural killer T) cells. Cancer Research, 2003, 63, 3058-60. | 0.4 | 42 | | 403 | Killing by cytotoxic T cells and natural killer cells: Multiple granule serine proteases as initiators of DNA fragmentation. Immunology and Cell Biology, 1993, 71, 201-208. | 1.0 | 41 | | 404 | Lymphocyte-mediated immunosurveillance of epithelial cancers?. Trends in Immunology, 2001, 22, 409-411. | 2.9 | 41 | | 405 | Parallels and distinctions between T and NKT cell development in the thymus. Immunology and Cell Biology, 2004, 82, 269-275. | 1.0 | 41 | | 406 | Dihydrofuro [3,4 <i>-c</i>) pyridinones as Inhibitors of the Cytolytic Effects of the Pore-Forming Glycoprotein Perforin. Journal of Medicinal Chemistry, 2008, 51, 7614-7624. | 2.9 | 41 | | 407 | 2018 Nobel Prize in physiology or medicine. Clinical and Translational Immunology, 2018, 7, e1041. | 1.7 | 41 | | 408 | Working with NKT cells â€" pitfalls and practicalities. Current Opinion in Immunology, 2005, 17, 448-454. | 2.4 | 40 | | 409 | Perforin-mediated suppression of B-cell lymphoma. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2723-2728. | 3.3 | 40 | | 410 | DX5/CD49b-Positive T Cells Are Not Synonymous with CD1d-Dependent NKT Cells. Journal of Immunology, 2005, 175, 4416-4425. | 0.4 | 39 | | 411 | NKG2A Inhibits Invariant NKT Cell Activation in Hepatic Injury. Journal of Immunology, 2009, 182, 250-258. | 0.4 | 39 | | 412 | A potential role for RAGâ€1 in NK cell development revealed by analysis of NK cells during ontogeny. Immunology and Cell Biology, 2010, 88, 107-116. | 1.0 | 39 | | 413 | Cutting Edge: DNAX Accessory Molecule 1–Deficient CD8+ T Cells Display Immunological Synapse Defects That Impair Antitumor Immunity. Journal of Immunology, 2014, 192, 553-557. | 0.4 | 39 | | 414 | IL-21 Enhances Tumor-Specific CTL Induction by Anti-DR5 Antibody Therapy. Journal of Immunology, 2006, 176, 6347-6355. | 0.4 | 38 | | # | Article | IF | CITATIONS | |-----|--|-----|-----------| | 415 | Ex vivo culture of chimeric antigen receptor T cells generates functional CD8+ T cells with effector and central memory-like phenotype. Gene Therapy, 2010, 17, 1105-1116. | 2.3 | 38 | | 416 | Mice deficient in heparanase exhibit impaired dendritic cell migration and reduced airway inflammation. European Journal of Immunology, 2014, 44, 1016-1030. | 1.6 | 38 | | 417 | NKT cells are not critical for HSVâ€1 disease resolution. Immunology and Cell Biology, 2006, 84, 13-19. | 1.0 | 37 | | 418 | Patients with multiple myeloma treated with thalidomide: evaluation of clinical parameters, cytokines, angiogenic markers, mast cells and marrow CD57+ cytotoxic T cells as predictors of outcome. Haematologica, 2007, 92, 1075-1082. | 1.7 | 36 | | 419 | The granzyme B-Serpinb9 axis controls the fate of lymphocytes after lysosomal stress. Cell Death and Differentiation, 2014, 21, 876-887. | 5.0 | 36 | | 420 | XENOSPECIFIC CYTOTOXIC T LYMPHOCYTES USE PERFORIN-AND FAS-MEDIATED LYTIC PATHWAYS1. Transplantation, 1996, 62, 1529-1532. | 0.5 | 36 | | 421 | Making Macrophages Eat Cancer. Science, 2013, 341, 41-42. | 6.0 | 35 | | 422 | Interleukin 21: A Key Player in Lymphocyte Maturation. Critical Reviews in Immunology, 2004, 24, 239-250. | 1.0 | 35 | | 423 | CD1d Activation and Blockade: A New Antitumor Strategy. Journal of Immunology, 2009, 182, 3366-3371. | 0.4 | 34 | | 424 | Influenza A Infection Enhances Cross-Priming of CD8+T Cells to Cell-Associated Antigens in a TLR7- and Type I IFN-Dependent Fashion. Journal of Immunology, 2010, 185, 6013-6022. | 0.4 | 34 | | 425 | Type I Interferons Suppress Anti-parasitic Immunity and Can Be Targeted to Improve Treatment of Visceral Leishmaniasis. Cell Reports, 2020, 30, 2512-2525.e9. | 2.9 | 34 | | 426 | Use of vasoactive agents to increase tumor perfusion and the antitumor efficacy of drug-monoclonal antibody conjugates. Journal of the National Cancer Institute, 1987, 79, 1367-73. | 3.0 | 34 | | 427 | The genes encoding NK cell granule serine proteases, human tryptase-2 (TRYP2) and human granzyme A (HFSP), both map to chromosome 5q11-q12 and define a new locus for cytotoxic lymphocyte granule tryptases. Immunogenetics, 1994, 40, 235-237. | 1.2 | 33 | | 428 | Multiple cytolytic mechanisms displayed by activated human peripheral blood T cell subsets. Journal of Immunology, 1992, 148, 55-62. | 0.4 | 33 | | 429 | Multiple deficiencies underlie NK cell inactivity in lymphotoxin-alpha gene-targeted mice. Journal of Immunology, 1999, 163, 1350-3. | 0.4 | 33 | | 430 | Biology and Clinical Observations of Regulatory T Cells in Cancer Immunology. Current Topics in Microbiology and Immunology, 2010, 344, 61-95. | 0.7 | 32 | | 431 | Combined Anti-CD40 and Anti–IL-23 Monoclonal Antibody Therapy Effectively Suppresses Tumor
Growth and Metastases. Cancer Research, 2014, 74, 2412-2421. | 0.4 | 32 | | 432 | Co-inhibition of colony stimulating factor-1 receptor and BRAF oncogene in mouse models of BRAF ^{V600E} melanoma. Oncolmmunology, 2016, 5, e1089381. | 2.1 | 32 | | # | Article | IF | CITATIONS | |-----
--|-----|-----------| | 433 | GVHD prevents NK-cell–dependent leukemia and virus-specific innate immunity. Blood, 2017, 129, 630-642. | 0.6 | 32 | | 434 | Purification of a factor from the granules of a rat natural killer cell line (RNK) that reduces tumor cell growth and changes tumor morphology. Molecular identity with a granule serine protease (RNKP-1). Journal of Immunology, 1992, 148, 292-300. | 0.4 | 32 | | 435 | Chemoimmunoconjugates for the Treatment of Cancer. Advances in Immunology, 1994, 56, 301-387. | 1.1 | 31 | | 436 | The Elusive NKT Cell AntigenIs the Search Over?. Science, 2004, 306, 1687-1689. | 6.0 | 31 | | 437 | Redundancy in the immune system restricts the spread of HSV-1 in the central nervous system (CNS) of C57BL/6 mice. Virology, 2010, 400, 248-258. | 1.1 | 31 | | 438 | Stable IL-10: A New Therapeutic that Promotes Tumor Immunity. Cancer Cell, 2011, 20, 691-693. | 7.7 | 31 | | 439 | Toll-like receptor 3 regulates NK cell responses to cytokines and controls experimental metastasis. Oncolmmunology, 2015, 4, e1027468. | 2.1 | 31 | | 440 | Blockade of ErbB2 and PD-L1 using a bispecific antibody to improve targeted anti-ErbB2 therapy. Oncolmmunology, 2019, 8, e1648171. | 2.1 | 31 | | 441 | Delayed kinetics of tumor necrosis factor-mediated bystander lysis by peptide-specific CD8+ cytotoxic T lymphocytes. European Journal of Immunology, 1998, 28, 4162-4169. | 1.6 | 30 | | 442 | Blastocyst MHC, a Putative Murine Homologue of HLA-G, Protects TAP-Deficient Tumor Cells from Natural Killer Cell-Mediated Rejection In Vivo. Journal of Immunology, 2003, 171, 1715-1721. | 0.4 | 30 | | 443 | Mouse Models of Tumor Immunotherapy. Advances in Immunology, 2016, 130, 1-24. | 1.1 | 30 | | 444 | Autophagy and proteasome interconnect to coordinate crossâ€presentation through MHC class I pathway in B cells. Immunology and Cell Biology, 2016, 94, 964-974. | 1.0 | 30 | | 445 | TREM2 marks tumor-associated macrophages. Signal Transduction and Targeted Therapy, 2020, 5, 233. | 7.1 | 30 | | 446 | Comparison of the effect of IL-2 and IL-6 on the lytic activity of purified human peripheral blood large granular lymphocytes. Journal of Immunology, 1991, 146, 1380-4. | 0.4 | 30 | | 447 | Increased antitumor effect of immunoconjugates and tumor necrosis factor in vivo. Cancer Research, 1988, 48, 3607-12. | 0.4 | 30 | | 448 | Granule serine proteases are normal nuclear constituents of natural killer cells. Journal of Biological Chemistry, 1994, 269, 18359-65. | 1.6 | 30 | | 449 | Does IL-17 suppress tumor growth?. Blood, 2010, 115, 2554-2555. | 0.6 | 29 | | 450 | Contribution of humoral immune responses to the antitumor effects mediated by anthracyclines. Cell Death and Differentiation, 2014, 21, 50-58. | 5.0 | 29 | | # | Article | IF | CITATIONS | |-----|---|-----|-----------| | 451 | The immune checkpoint CD96 defines a distinct lymphocyte phenotype and is highly expressed on tumorâ€infiltrating TÂcells. Immunology and Cell Biology, 2019, 97, 152-164. | 1.0 | 29 | | 452 | The use of chimeric human Fcl $\hat{\mu}$ receptor I to redirect cytotoxic T lymphocytes to tumors. Journal of Leukocyte Biology, 1996, 60, 721-728. | 1.5 | 28 | | 453 | Fas-ligand-mediated lysis of erbB-2-expressing tumour cells by redirected cytotoxic T lymphocytes.
Cancer Immunology, Immunotherapy, 1999, 47, 278-286. | 2.0 | 28 | | 454 | Can NK cells be a therapeutic target in human diseases?. European Journal of Immunology, 2008, 38, 2964-2968. | 1.6 | 28 | | 455 | Osteoclast Inhibitory Lectin, an Immune Cell Product That Is Required for Normal Bone Physiology in Vivo. Journal of Biological Chemistry, 2008, 283, 30850-30860. | 1.6 | 28 | | 456 | CD1d-Based Combination Therapy Eradicates Established Tumors in Mice. Journal of Immunology, 2009, 183, 1911-1920. | 0.4 | 28 | | 457 | Invariant natural killer T cell–natural killer cell interactions dictate transplantation outcome after α-galactosylceramide administration. Blood, 2009, 113, 5999-6010. | 0.6 | 28 | | 458 | Th17 plasticity and transition toward a pathogenic cytokine signature are regulated by cyclosporine after allogeneic SCT. Blood Advances, 2017, 1, 341-351. | 2.5 | 28 | | 459 | Overcoming Acquired PD-1/PD-L1 Resistance with CD38 Blockade. Cancer Discovery, 2018, 8, 1066-1068. | 7.7 | 28 | | 460 | XENOSPECIFIC CYTOTOXIC T LYMPHOCYTES. Transplantation, 1997, 63, 1171-1178. | 0.5 | 28 | | 461 | Specific targeting of chlorambucil to tumors with the use of monoclonal antibodies. Journal of the National Cancer Institute, 1986, 76, 503-10. | 3.0 | 28 | | 462 | Selective enhancement of antitumor activity of N-acetyl melphalan upon conjugation to monoclonal antibodies. Cancer Research, 1987, 47, 62-9. | 0.4 | 28 | | 463 | A novel substrate-binding pocket interaction restricts the specificity of the human NK cell-specific serine protease, Met-ase-1. Journal of Immunology, 1996, 156, 4174-81. | 0.4 | 28 | | 464 | Cloning and expression of the recombinant mouse natural killer cell granzymeMet-ase-1. Immunogenetics, 1996, 44, 340-350. | 1.2 | 27 | | 465 | Adoptive T Cell Therapy Targeting Different Gene Products Reveals Diverse and Context-Dependent Immune Evasion in Melanoma. Immunity, 2020, 53, 564-580.e9. | 6.6 | 27 | | 466 | Targeting an adenosine-mediated "don't eat me signal―augments anti-lymphoma immunity by anti-CD20 monoclonal antibody. Leukemia, 2020, 34, 2708-2721. | 3.3 | 27 | | 467 | Immunochemotherapy of a murine thymoma with the use of idarubicin monoclonal antibody conjugates. Cancer Research, 1988, 48, 926-31. | 0.4 | 27 | | 468 | The use of monoclonal antibody conjugates for the diagnosis and treatment of cancer. Immunology and Cell Biology, 1987, 65, 111-125. | 1.0 | 26 | | # | Article | IF | CITATIONS | |-----|--|-----|-----------| | 469 | P-glycoprotein Does Not Protect Cells against Cytolysis Induced by Pore-forming Proteins. Journal of Biological Chemistry, 2001, 276, 16667-16673. | 1.6 | 26 | | 470 | Subset Analysis of Human and Mouse Mature NK Cells. Methods in Molecular Biology, 2010, 612, 27-38. | 0.4 | 26 | | 471 | TNFR2/BIRC3-TRAF1 signaling pathway as a novel NK cell immune checkpoint in cancer.
Oncolmmunology, 2018, 7, e1386826. | 2.1 | 26 | | 472 | Hide and seek: Plasticity of innate lymphoid cells in cancer. Seminars in Immunology, 2019, 41, 101273. | 2.7 | 26 | | 473 | Infiltrating Myeloid Cells Drive Osteosarcoma Progression via GRM4 Regulation of IL23. Cancer Discovery, 2019, 9, 1511-1519. | 7.7 | 26 | | 474 | HMBA induces activation of a caspase-independent cell death pathway to overcome P-glycoprotein-mediated multidrug resistance. Blood, 2000, 95, 2378-85. | 0.6 | 26 | | 475 | Cloning and expression of a second human natural killer cell granule tryptase, HNK-Tryp-2/granzyme 3. Journal of Leukocyte Biology, 1996, 59, 763-768. | 1.5 | 25 | | 476 | Absence of retroviral vector-mediated transformation of gene-modified T cells after long-term engraftment in mice. Gene Therapy, 2008, 15, 1056-1066. | 2.3 | 25 | | 477 | SOCS-1 Binding to Tyrosine 441 of IFN-Î ³ Receptor Subunit 1 Contributes to the Attenuation of IFN-Î ³ Signaling In Vivo. Journal of Immunology, 2009, 183, 4537-4544. | 0.4 | 25 | | 478 | Sensitivity of a novel model of mammary cancer stem cell-like cells to TNF-related death pathways. Cancer Immunology, Immunotherapy, 2012, 61, 1255-1268. | 2.0 | 25 | | 479 | IL-17A–Producing γδT Cells Suppress Early Control of Parasite Growth by Monocytes in the Liver.
Journal of Immunology, 2015, 195, 5707-5717. | 0.4 | 25 | | 480 | Selective activation of anti-CD73 mechanisms in control of primary tumors and metastases. Oncolmmunology, 2017, 6, e1312044. | 2.1 | 25 | | 481 | ACKR4 restrains antitumor immunity by regulating CCL21. Journal of Experimental Medicine, 2020, 217, . | 4.2 | 25 | | 482 | HMBA induces activation of a caspase-independent cell death pathway to overcome P-glycoprotein-mediated multidrug resistance. Blood, 2000, 95, 2378-2385. | 0.6 | 25 | | 483 | Expression of Recombinant Human MET-ASE-1: A NK Cell-Specific Granzyme. Biochemical and Biophysical Research Communications, 1995, 217, 675-683. | 1.0 | 24 | | 484 | Type I interferon and cancer immunoediting. Nature Immunology, 2005, 6, 646-648. | 7.0 | 24 | | 485 | Antitumor activity of dual-specific T cells and influenza virus. Cancer Gene Therapy, 2007, 14, 499-508. | 2.2 | 24 | | 486 | Interleukin 21 Enhances Antibody-Mediated Tumor Rejection. Cancer Research, 2008, 68, 3019-3025. | 0.4 | 24 | | # | Article | IF | CITATIONS | |-----|--|-----|-----------| | 487 | Chemokine–chemokine receptors in cancer immunotherapy. Immunotherapy, 2009, 1, 109-127. | 1.0 | 24 | | 488 | Three agonist antibodies in combination with high-dose IL-2 eradicate orthotopic kidney cancer in mice. Journal of Translational Medicine, 2010, 8, 42. | 1.8 | 24 | | 489 | The Adjuvant Effects of Antibodies. Science, 2011, 333, 944-945. | 6.0 | 24 | | 490 | Targeting regulatory T cells in tumor immunotherapy. Immunology and Cell Biology, 2014, 92, 473-474. | 1.0 | 24 | | 491 | Human peripheral blood DNAM-1neg NK cells are a terminally differentiated subset with limited effector functions. Blood Advances, 2019, 3, 1681-1694. | 2.5 | 24 | | 492 |
Fas ligand-mediated bystander lysis of syngeneic cells in response to an allogeneic stimulus. Journal of Immunology, 1997, 158, 5765-72. | 0.4 | 24 | | 493 | Adoptive Transfer of Chimeric Fc Îμ RI Receptor Gene-Modified Human T Cells for Cancer Immunotherapy.
Human Gene Therapy, 2006, 17, 1134-1143. | 1.4 | 23 | | 494 | Characterizing the anti-tumor function of adoptively transferred NK cells in vivo. Cancer Immunology, Immunotherapy, 2010, 59, 1235-1246. | 2.0 | 23 | | 495 | Tumor necrosis factor is dispensable for the success of immunogenic anticancer chemotherapy. Oncolmmunology, 2013, 2, e24786. | 2.1 | 23 | | 496 | DNAM-1: would the real natural killer cell please stand up!. Oncotarget, 2015, 6, 28537-28538. | 0.8 | 23 | | 497 | HDAC Inhibitor Panobinostat Engages Host Innate Immune Defenses to Promote the Tumoricidal Effects of Trastuzumab in HER2+ Tumors. Cancer Research, 2017, 77, 2594-2606. | 0.4 | 23 | | 498 | Fas Ligand-Mediated Lysis of Self Bystander Targets by Human Papillomavirus-Specific CD8 ⁺ Cytotoxic T Lymphocytes. Journal of Virology, 1998, 72, 5948-5954. | 1.5 | 23 | | 499 | Toll-Like Receptor Triggering and T-Cell Costimulation Induce Potent Antitumor Immunity in Mice.
Clinical Cancer Research, 2009, 15, 7624-7633. | 3.2 | 22 | | 500 | Co-blockade of immune checkpoints and adenosine A _{2A} receptor suppresses metastasis. Oncolmmunology, 2014, 3, e958952. | 2.1 | 22 | | 501 | HYPOTHESIS: CYTOTOXIC LYMPHOCYTE GRANULE SERINE PROTEASES ACTIVATE TARGET CELL ENDONUCLEASES TO TRIGGER APOPTOSIS. Clinical and Experimental Pharmacology and Physiology, 1994, 21, 67-70. | 0.9 | 21 | | 502 | Alloreactive natural killer cells in hematopoietic stem cell transplantation. Leukemia Research, 2011, 35, 14-21. | 0.4 | 21 | | 503 | Both <scp>IFN</scp> â€Ĵ³ and <scp>IL</scp> â€Ĵ7 are required for the development of severe autoimmune gastritis. European Journal of Immunology, 2012, 42, 2574-2583. | 1.6 | 21 | | 504 | Improved Treatment of Breast Cancer with Anti-HER2 Therapy Requires Interleukin-21 Signaling in CD8+T Cells. Cancer Research, 2016, 76, 264-274. | 0.4 | 21 | | # | Article | IF | Citations | |-----|---|-----|-----------| | 505 | Cytomegalovirus MHC class I homologues and natural killer cells: an overview. Microbes and Infection, 2000, 2, 521-532. | 1.0 | 20 | | 506 | Flt-3L Expansion of Recipient CD8 \hat{l} ±+ Dendritic Cells Deletes Alloreactive Donor T Cells and Represents an Alternative to Posttransplant Cyclophosphamide for the Prevention of GVHD. Clinical Cancer Research, 2018, 24, 1604-1616. | 3.2 | 20 | | 507 | Pharmacodynamics of Pre-Operative PD1 checkpoint blockade and receptor activator of NFkB ligand (RANKL) inhibition in non-small cell lung cancer (NSCLC): study protocol for a multicentre, open-label, phase 1B/2, translational trial (POPCORN). Trials, 2019, 20, 753. | 0.7 | 20 | | 508 | Chemotherapy followed by anti-CD137 mAb immunotherapy improves disease control in a mouse myeloma model. JCI Insight, 2019, 4, . | 2.3 | 20 | | 509 | The mode of action of methotrexateâ€monoclonal antibody conjugates. Immunology and Cell Biology, 1987, 65, 189-200. | 1.0 | 19 | | 510 | Regulation of antitumour immunity by CD1d-restricted NKT cells. Immunology and Cell Biology, 2004, 82, 323-331. | 1.0 | 19 | | 511 | NK Cells Use NKG2D to Recognize a Mouse Renal Cancer (Renca), yet Require Intercellular Adhesion
Molecule-1 Expression on the Tumor Cells for Optimal Perforin-Dependent Effector Function. Journal
of Immunology, 2006, 177, 2575-2583. | 0.4 | 19 | | 512 | Distinct receptor repertoire formation in mouse NK cell subsets regulated by MHC class I expression. Journal of Leukocyte Biology, 2008, 83, 106-111. | 1.5 | 19 | | 513 | The Early Kinetics of Cytomegalovirus-Specific CD8 ⁺ T-Cell Responses Are Not Affected by Antigen Load or the Absence of Perforin or Gamma Interferon. Journal of Virology, 2008, 82, 4931-4937. | 1.5 | 19 | | 514 | ILâ€21 Modulates Activation of NKT Cells in Patients with Stage IV Malignant Melanoma. Clinical and Translational Immunology, 2013, 2, e6. | 1.7 | 19 | | 515 | ACCESSORY FUNCTION FOR NK1.1+ NATURAL KILLER CELLS PRODUCING INTERFERON-?? IN XENOSPECIFIC CYTOTOXIC T LYMPHOCYTE DIFFERENTIATION1. Transplantation, 1999, 68, 840-843. | 0.5 | 19 | | 516 | Response to 'A cancer immunosurveillance controversy'. Nature Immunology, 2004, 5, 4-5. | 7.0 | 18 | | 517 | Subsite specificities of granzyme M: a study of inhibitors and newly synthesized thiobenzyl ester substrates. Archives of Biochemistry and Biophysics, 2004, 422, 9-22. | 1.4 | 18 | | 518 | Combination antibody-based cancer immunotherapy. Cancer Science, 2007, 98, 1297-1302. | 1.7 | 18 | | 519 | Endogenous IL-21 Restricts CD8+ T Cell Expansion and Is not Required for Tumor Immunity. Journal of Immunology, 2009, 183, 7326-7336. | 0.4 | 18 | | 520 | NK cell intrinsic regulation of MIP-1α by granzyme M. Cell Death and Disease, 2014, 5, e1115-e1115. | 2.7 | 18 | | 521 | The atypical chemokine receptor CCXâ€CKR regulates metastasis of mammary carcinoma via an effect on EMT. Immunology and Cell Biology, 2014, 92, 815-824. | 1.0 | 18 | | 522 | Type I <scp>NKT</scp> â€cellâ€mediated <scp>TNF</scp> â€î± is a positive regulator of <scp>NLRP</scp> 3 inflammasome priming. European Journal of Immunology, 2014, 44, 2111-2120. | 1.6 | 18 | | # | Article | IF | Citations | |-----|---|------|-----------| | 523 | NK Cell-Based Cancer Immunotherapy. Drug News and Perspectives, 2007, 20, 155. | 1.9 | 18 | | 524 | Mechanisms of cytotoxicity used by human peripheral blood CD4+ and CD8+ T cell subsets. The role of granule exocytosis. Journal of Immunology, 1993, 151, 740-7. | 0.4 | 18 | | 525 | Xenogeneic mouse antiâ€human NK cytotoxicity is mediated via perforin. Xenotransplantation, 1997, 4, 78-84. | 1.6 | 17 | | 526 | Imatinib Mesylate — Uncovering a Fast Track to Adaptive Immunity. New England Journal of Medicine, 2006, 354, 2282-2284. | 13.9 | 17 | | 527 | Homeostatic defects in interleukin 18â€deficient mice contribute to protection against the lethal effects of endotoxin. Immunology and Cell Biology, 2011, 89, 739-746. | 1.0 | 17 | | 528 | A _{2A} blockade enhances anti-metastatic immune responses. Oncolmmunology, 2013, 2, e26705. | 2.1 | 17 | | 529 | Immunoediting of cancer metastasis by NK cells. Nature Cancer, 2020, 1, 670-671. | 5.7 | 17 | | 530 | Purification and cloning of a novel serine protease, RNK-Tryp-2, from the granules of a rat NK cell leukemia. Journal of Immunology, 1994, 152, 2289-97. | 0.4 | 17 | | 531 | Distinct granzyme expression in human CD3- CD56+ large granular- and CD3- CD56+ small high density-lymphocytes displaying non-MHC-restricted cytolytic activity. Journal of Leukocyte Biology, 1995, 57, 88-93. | 1.5 | 16 | | 532 | Multiple Roles of Perforin in Hampering ERBB-2 (Her-2/neu) Carcinogenesis in Transgenic Male Mice. Journal of Immunology, 2014, 192, 5434-5441. | 0.4 | 16 | | 533 | Rapid loss of group 1 innate lymphoid cells during blood stage Plasmodium infection. Clinical and Translational Immunology, 2018, 7, e1003. | 1.7 | 16 | | 534 | P-Glycoprotein Protects Leukemia Cells Against Caspase-Dependent, but not Caspase-Independent, Cell Death. Blood, 1999, 93, 1075-1085. | 0.6 | 16 | | 535 | NKG7 Is Required for Optimal Antitumor T-cell Immunity. Cancer Immunology Research, 2022, 10, 154-161. | 1.6 | 16 | | 536 | Antigen Challenge Inhibits Thymic Emigration. Journal of Immunology, 2006, 176, 4553-4561. | 0.4 | 15 | | 537 | Prophylactic and therapeutic adenoviral vector-based multivirus-specific T-cell immunotherapy for transplant patients. Molecular Therapy - Methods and Clinical Development, 2016, 3, 16058. | 1.8 | 15 | | 538 | PD1 functions by inhibiting CD28â€mediated coâ€stimulation. Clinical and Translational Immunology, 2017, 6, e138. | 1.7 | 15 | | 539 | TGF \hat{I}^2 shuts the door on T cells. British Journal of Cancer, 2018, 119, 1-3. | 2.9 | 15 | | 540 | The gene encoding a human natural killer cell granule serine protease, Met-ase 1, maps to chromosome 19p13.3. Immunogenetics, 1994, 39, 294-5. | 1.2 | 14 | | # | Article | IF | CITATIONS | |-----|---|------|-----------| | 541 | Adoptive transfer: The role of perforin in mouse cytotoxic T lymphocyte rejection of human tumor xenografts in vivo. Xenotransplantation, 1998, 5, 146-153. | 1.6 | 14 | | 542 | Perforin-Dependent Cytolytic Responses in \hat{l}^2 2-Microglobulin-Deficient Mice. Cellular Immunology, 1999, 196, 51-59. | 1.4 | 14 | | 543 | The combination of histone deacetylase inhibitors with immune-stimulating antibodies has potent anti-cancer effects. Oncolmmunology, 2012, 1, 377-379. | 2.1 | 14 | | 544 | Granzyme M has a critical role in providing innate immune protection in ulcerative colitis. Cell Death and Disease, 2016, 7, e2302-e2302. | 2.7 | 14 | | 545 | Multiple approaches to immunotherapy ―the new pillar of cancer treatment. Immunology and Cell Biology, 2017, 95, 323-324. | 1.0 | 14 | | 546 | Cancer Immunotherapy and the Nectin Family. Annual Review of Cancer Biology, 2021, 5, 203-219. | 2.3 | 14 | | 547 | The in vitro and in vivo anti-tumour activity of N-AcMEL-(Fab')2 conjugates. British Journal of Cancer, 1987, 55, 7-11. | 2.9 | 13 | | 548 | Equivalent Death of P-Glycoprotein Expressing and Nonexpressing Cells Induced by the Protein Kinase C Inhibitor
Staurosporine. Biochemical and Biophysical Research Communications, 2000, 276, 231-237. | 1.0 | 13 | | 549 | A novel axis of innate immunity in cancer. Nature Immunology, 2010, 11, 981-982. | 7.0 | 13 | | 550 | Antibody responses to glycolipidâ€borne carbohydrates require CD4 ⁺ T cells but not CD1 or NKT cells. Immunology and Cell Biology, 2011, 89, 502-510. | 1.0 | 13 | | 551 | Enhancing the antitumor effects of radiotherapy with combinations of immunostimulatory antibodies. Oncolmmunology, 2012, 1, 1629-1631. | 2.1 | 13 | | 552 | NKT cell adjuvants in therapeutic vaccines against hematological cancers. Oncolmmunology, 2013, 2, e22615. | 2.1 | 13 | | 553 | Innate myeloid cells in the tumor microenvironment. Current Opinion in Immunology, 2021, 69, 18-28. | 2.4 | 13 | | 554 | Innate Tumor Immune Surveillance. Advances in Experimental Medicine and Biology, 2007, 590, 103-111. | 0.8 | 13 | | 555 | Redirected Cytotoxic Effector Function. Journal of Biological Chemistry, 1996, 271, 21214-21220. | 1.6 | 12 | | 556 | T Cells Gene-engineered with DAP12 Mediate Effector Function in an NKG2D-dependent and Major Histocompatibility Complex-independent Manner. Journal of Biological Chemistry, 2005, 280, 38235-38241. | 1.6 | 12 | | 557 | A New Therapeutic Target for Leukemia Comes to the Surface. Cell, 2009, 138, 226-228. | 13.5 | 12 | | 558 | The interaction between murine melanoma and the immune system reveals that prolonged responses predispose for autoimmunity. Oncolmmunology, 2013, 2, e23036. | 2.1 | 12 | | # | Article | lF | CITATIONS | |-------------|---|-----|-----------| | 559 | BRAF-targeted therapy and immune responses to melanoma. Oncolmmunology, 2013, 2, e24462. | 2.1 | 12 | | 560 | Dual mechanisms of lymphocytemediated cytotoxicity serve to control and deliver the immune response. BioEssays, 1995, 17, 891-898. | 1.2 | 11 | | 561 | The natural killer cell serine protease gene Lmet1 maps to mouse chromosome 10. Immunogenetics, 1995, 41, 47-49. | 1.2 | 11 | | 562 | Antitumor activities and onâ€ŧarget toxicities mediated by a TRAIL receptor agonist following cotreatment with panobinostat. International Journal of Cancer, 2011, 128, 2735-2747. | 2.3 | 11 | | 563 | Studying the role of the immune system on the antitumor activity of a Hedgehog inhibitor against murine osteosarcoma. Oncolmmunology, 2012, 1, 1313-1322. | 2.1 | 11 | | 564 | Modulation of antitumour immune responses by intratumoural Stat1 expression. Immunology and Cell Biology, 2013, 91, 556-567. | 1.0 | 11 | | 565 | Can Cancer Trigger Autoimmunity?. Science, 2014, 343, 147-148. | 6.0 | 11 | | 566 | Anti-CD137 enhances anti-CD20 therapy of systemic B-cell lymphoma with altered immune homeostasis but negligible toxicity. Oncolmmunology, 2016, 5, e1192740. | 2.1 | 11 | | 567 | Concomitant or delayed anti-TNF differentially impact on immune-related adverse events and antitumor efficacy after anti-CD40 therapy., 2020, 8, e001687. | | 11 | | 568 | Cloning and characterization of a novel NK cell-specific serine protease gene and its functional 5?-flanking sequences. Immunogenetics, 1995, 42, 101-11. | 1.2 | 10 | | 569 | No requirement for TRAIL in intrathymic negative selection. International Immunology, 2008, 20, 267-276. | 1.8 | 10 | | 570 | Experimental Lung Metastases in Mice Are More Effectively Inhibited by Blockade of IL23R than IL23. Cancer Immunology Research, 2018, 6, 978-987. | 1.6 | 10 | | 571 | EVIDENCE THAT AN ANTHRACYCLINE-ANTI-CD8 IMMUNOCONJUGATE, IDARUBICIN-ANTI-LY-2.1, PROLONGS HEART ALLOGRAFT SURVIVAL IN MICE. Transplantation, 1993, 55, 484-489. | 0.5 | 8 | | 572 | IL-7 and the thymus dictate the NK cell 'labor market'. Nature Immunology, 2006, 7, 1134-1136. | 7.0 | 8 | | 57 3 | Differential potency of regulatory T cell-mediated immunosuppression in kidney tumors compared to subcutaneous tumors. Oncolmmunology, 2014, 3, e963395. | 2.1 | 8 | | 574 | Checkpoint Immunotherapy: Picking a Winner. Cancer Discovery, 2016, 6, 818-820. | 7.7 | 8 | | 575 | Cloning and expression of the recombinant mouse natural killer cell granzyme Met-ase-1. Immunogenetics, 1996, 44, 340-350. | 1.2 | 8 | | 576 | Use of the 5′ -flanking region of the mouse perforin gene to express human Fcγ receptor I in cytotoxic T lymphocytes. Journal of Leukocyte Biology, 1994, 55, 514-522. | 1.5 | 7 | | # | Article | IF | CITATIONS | |-----|---|-----|-----------| | 577 | The peptide loop consisting of amino acids 139–157 of human granzyme B (fragmentin 2) contains an immunodominant epitope recognized by the mouse. Molecular Immunology, 1995, 32, 909-917. | 1.0 | 7 | | 578 | Age-dependent, polyclonal hyperactivation of T cells is reduced in TNF-negative <i>gld/gld</i> mice. Journal of Leukocyte Biology, 2009, 85, 108-116. | 1.5 | 7 | | 579 | Her 2 in 1. Cancer Cell, 2010, 18, 101-102. | 7.7 | 7 | | 580 | Cancer Immunoediting. , 2013, , 85-99. | | 7 | | 581 | Physicochemical properties that control protein aggregation also determine whether a protein is retained or released from necrotic cells. Open Biology, 2016, 6, 160098. | 1.5 | 7 | | 582 | Cancerâ€killing, decoyâ€resistant interleukinâ€18. Immunology and Cell Biology, 2020, 98, 434-436. | 1.0 | 7 | | 583 | Systemic administration of ILâ€33 induces a population of circulating KLRG1 hi type 2 innate lymphoid cells and inhibits type 1 innate immunity against multiple myeloma. Immunology and Cell Biology, 2021, 99, 65-83. | 1.0 | 7 | | 584 | XENOSPECIFIC CD8+ CYTOTOXIC T LYMPHOCYTE GENERATION. Transplantation, 1998, 65, 1278-1281. | 0.5 | 7 | | 585 | Targeting Lewis Y-Positive Multiple Myeloma and Acute Myeloid Leukemia with Gene-Modified T Cells Demonstrating Memory Phenotype. Blood, 2008, 112, 3900-3900. | 0.6 | 7 | | 586 | TNF contributes to the immunopathology of perforin/Fas ligand double deficiency. Immunology and Cell Biology, 2002, 80, 436-440. | 1.0 | 6 | | 587 | Unexpectedly, induction of cytotoxic T lymphocytes enhances the humoral response after DNA immunization. Blood, 2004, 103, 3073-3075. | 0.6 | 6 | | 588 | Contribution of IL-17–producing γδT cells to the efficacy of anticancer chemotherapy. Journal of Experimental Medicine, 2011, 208, 869-869. | 4.2 | 6 | | 589 | Targeting the IL-12/IL-23 axis. Oncolmmunology, 2014, 3, e28964. | 2.1 | 6 | | 590 | Coinfection with Human Cytomegalovirus Genetic Variants in Transplant Recipients and Its Impact on Antiviral T Cell Immune Reconstitution. Journal of Virology, 2016, 90, 7497-7507. | 1.5 | 6 | | 591 | ASC Modulates CTL Cytotoxicity and Transplant Outcome Independent of the Inflammasome. Cancer Immunology Research, 2020, 8, 1085-1098. | 1.6 | 6 | | 592 | Immunochemotherapy of human colon carcinoma xenografts in nude mice using combinations of idarubicinâ€monoclonal antibody conjugates. Immunology and Cell Biology, 1993, 71, 167-179. | 1.0 | 5 | | 593 | cDNA cloning of granzyme J. Immunogenetics, 1997, 45, 452-454. | 1.2 | 5 | | 594 | Myeloid TGF-Î ² Responsiveness Promotes Metastases. Cancer Discovery, 2013, 3, 846-848. | 7.7 | 5 | | # | Article | IF | CITATIONS | |-----|--|-----|-----------| | 595 | Natural Killer cell control of BRAFV 600 Emutant melanoma during targeted the rapy. Oncolmmunology, 2015, 4, e998119. | 2.1 | 5 | | 596 | The cellular uptake and cytotoxicity of chlorambucilâ€monoclonal autibody conjugates. Immunology and Cell Biology, 1987, 65, 315-321. | 1.0 | 4 | | 597 | Differential regulation of interleukin-1 gene expression in human CD3â° large granular lymphocytes.
Cellular Immunology, 1990, 131, 184-190. | 1.4 | 4 | | 598 | Clarification of data used in three studies on MCA-induction of sarcoma in mice. Blood, 2008, 111, 4419-4419. | 0.6 | 4 | | 599 | Response: dexamethasone dose alters expression of NK activating receptors in vivo. Blood, 2011, 118, 6466-6468. | 0.6 | 4 | | 600 | Non-classical MHC Class I molecules regulating natural killer cell function. Oncolmmunology, 2013, 2, e23336. | 2.1 | 4 | | 601 | Induction of potent NK cell-dependent anti-myeloma cytotoxic T cells in response to combined mapatumumab and bortezomib. Oncolmmunology, 2015, 4, e1038011. | 2.1 | 4 | | 602 | Regulation of Immune Cell Functions through Nectin and Nectin-Like Receptors., 2016,, 404-414. | | 4 | | 603 | IFN type III: <i>in vivo</i> NK cell response. Oncotarget, 2015, 6, 19960-19961. | 0.8 | 4 | | 604 | Antitumor activity of idarubicin-monoclonal antibody conjugates in a disseminated thymic lymphoma model. Cancer Research, 1991, 51, 310-7. | 0.4 | 4 | | 605 | Generation and cytotoxic profile of human peripheral blood CD4 ⁺ T lymphocytes. Immunology and Cell Biology, 1992, 70, 379-390. | 1.0 | 3 | | 606 | Expression of human perforin in a mouse cytotoxic T lymphocyte cell line: evidence for perturbation of granule-mediated cytotoxicity. Journal of Leukocyte Biology, 1993, 54, 528-533. | 1.5 | 3 | | 607 | Dissecting the apoptotic mechanisms of chemotherapeutic drugs and lymphocytes to design effective anticancer therapies. Drug Development Research, 2001, 52, 549-557. | 1.4 | 3 | | 608 | Purinergic Receptors: Novel Targets for Cancer Immunotherapy. , 2018, , 115-141. | | 3 | | 609 | Cancer Immunosurveillance by Natural Killer Cells and Other Innate Lymphoid Cells. , 2018, , 163-180. | | 3 | | 610 | Aberrant erythropoiesis fuels tumor growth. Cell Research, 2018, 28, 611-612. | 5.7 | 3 | | 611 | Host immunity contributes to the anti-melanoma activity of BRAF inhibitors. Journal of Clinical
Investigation, 2013, 123, 3182-3182. | 3.9 | 3 | | 612 | Potentiation of the in vitro cytotoxicity of chlorambucil by monoclonal antibodies. Journal of Immunology, 1986, 137, 3361-6. | 0.4 | 3 | | # | Article | IF | CITATIONS | |-----|---|-----|-----------| | 613 | IMMUNOSUPPRESSION OF GRAFT REJECTION WITH IDARUBICIN-MONOCLONAL ANTIBODY CONJUGATES BY ELIMINATION OF T CELL SUBSETS IN VIVO. Transplantation, 1988, 46, 126-131. | 0.5 | 2 | | 614 | Immune surveillance of lymphoma in humans?. Blood, 2005, 105, 4159-4160. | 0.6 | 2 | | 615 | Are We Really on the Right TRAIL?. Immunologic Research, 2005, 31, 161-164. | 1.3 | 2 | | 616 | Innate Cancer Immunoediting. Journal of Investigative Dermatology, 2020, 140, 745-747. | 0.3 | 2 | | 617 | Interleukin-21 and Cancer Therapy. , 2009, , 43-59. | | 2 | | 618 | Therapeutic Approaches Utilising NKT Cells. , 2012, , 111-128. | | 2 | | 619 | Abstract 526: Cancer immunoediting by the innate immune system in the absence of adaptive immunity. Cancer Research, 2012, 72, 526-526. | 0.4 | 2 | | 620 | ROLE OF MONOCLONAL ANTIBODIES IN THE THERAPY OF SOLID TUMOURS. ANZ Journal of Surgery, 1988, 58, 843-849. | 0.3 | 1 | | 621 | THE EFFECT OF IDARUBICIN MONOCLONAL ANTIBODY TREATMENT ON FIRST-SET REJECTION OF MURINE SKIN ALLOGRAFTS. Transplantation, 1989, 48, 77-79. | 0.5 | 1 | | 622 | Cytotoxic lymphocyteâ€mediated immunotherapy. Australian and New Zealand Journal of Medicine, 1995, 25, 852-858. | 0.5 | 1 | | 623 | Stress gets under your skin. Nature Immunology, 2008, 9, 119-120. | 7.0 | 1 | | 624 | Immunotherapeutic strategies as adjuncts to local radiotherapy. Immunotherapy, 2012, 4, 129-131. | 1.0 | 1 | | 625 | Liberating tumor immunity. Current Opinion in Immunology, 2012, 24, 204-206. | 2.4 | 1 | | 626 | Natural Killers out of Thin Air. Immunity, 2020, 52, 895-897. | 6.6 | 1 | | 627 | Discovery of an Innate Cancer Resistance Gene?. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2003, 3, 186-189. | 3.4 | 1 | | 628 | Promoting Regulation Via the Inhibition of DNAM-1 After Transplantation. Blood, 2012, 120, 338-338. | 0.6 | 1 | | 629 | Molecular Mechanisms of Lymphocyte Cytotoxicity. , 1993, , 223-234. | | 1 | | 630 | The question begs â€" what is the role of P-glycoprotein in normal physiology?. Drug Resistance Updates, 1998, 1, 340-342. | 6.5 | 0 | | # | Article | IF | Citations | |-----|---|-----|-----------| | 631 | P-glycoprotein as a General Antiapoptotic Protein. , 2002, , 433-441. | | O | | 632 | Letter to the Editor. Immunologic Research, 2004, 30, 255-256. | 1.3 | 0 | | 633 | Antibody responses to glycolipidâ€borne carbohydrates require CD4 ⁺ T cells but not CD1 or NKT cells. Immunology and Cell Biology, 2011, 89, 574-574. | 1.0 | 0 | | 634 | Death receptor-induced apoptosis signalling - essential guardian against autoimmune disease. Arthritis Research and Therapy, 2012, 14, . | 1.6 | 0 | | 635 | Granzyme M., 2013,, 2728-2731. | | 0 | | 636 | Cytokine-driven role of Srebps in killer cell metabolism. Nature Immunology, 2017, 18, 1183-1184. | 7.0 | 0 | | 637 | EVIDENCE FOR THE EXISTENCE OF CANCER IMMUNOSURVEILLANCE. Annals of Cancer Research and Therapy, 2004, 12, 9-32. | 0.1 | 0 | | 638 | Adoptive Transfer of Chimeric Fc?RI Gene-Modified Human T Cells for Cancer Immunotherapy. Human Gene Therapy, 2006, . | 1.4 | 0 | | 639 | Induction of Invariant NKT Cell-Dependent Alloreactivity by Administration of G-CSF after Bone Marrow Transplantation. Blood, 2008, 112, 3499-3499. | 0.6 | 0 | | 640 | Anti-Tumor Activity of Genetically Redirected T Cells Against Orthotopic Kidney Cancer in Mice~!2010-01-06~!2010-03-24~!2010-05-13~!. The Open Gene Therapy Journal, 2010, 3, 1-7. | 1.2 | 0 | | 641 | Autologous Peripheral Blood T Lymphocytes Transduced with An Anti LewisY Chimeric Receptor Gene
Persist In Patients with Lewisy Positive Acute Myeloid Leukaemia and Show Changes In Functional
Polarization After Adoptive Transfer,. Blood, 2011, 118, 4180-4180. | 0.6 | 0 | | 642 | An observational study of concomitant immunotherapies and denosumab in patients with advanced melanoma or lung cancer Journal of Clinical Oncology, 2018, 36, e21001-e21001. | 0.8 | 0 | | 643 | Donor T Cells Maintain Myeloma-Immune Equilibrium after Autologous Stem Cell Transplantation and Concurrent Immunotherapy Promotes Cure. Blood, 2018, 132, 2031-2031. | 0.6 | 0 | | 644 | Oncogenic-Drivers Dictate Immune Responses to Control Disease Progression in Acute Myeloid Leukaemia. Blood, 2018, 132, 904-904. | 0.6 | 0 | | 645 | Preoperative PD1 checkpoint blockade and receptor activator of NFkB ligand (RANKL) inhibition in non-small cell lung cancer (NSCLC) (POPCORN) Journal of Clinical Oncology, 2019, 37, TPS129-TPS129. | 0.8 | 0 | | 646 | Experimental Models of Cytokines and Cancer Prevention. , 2007, , 211-230. | | 0 | | 647 | The Immune System and Progression from Precursor Condition to Active Myeloma. Blood, 2020, 136, SCI5-SCI5. | 0.6 | 0 | | 648 | Monoclonal antibody-mediated targeting of alkylating agents for the treatment of cancer. Targeted Diagnosis and Therapy, 1988, 1, 123-56. | 0.1 | 0 | | # | Article | IF | CITATIONS | |-----|---|-----|-----------| | 649 | Abstract 359: CD4+ Natural Killer T Cells Promote Atherosclerosis via Cytotoxic Mechanism.
Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, . | 1.1 | O |