Uri Ben-David

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1004284/publications.pdf

Version: 2024-02-01

47 papers

6,903 citations

32 h-index 214527 47 g-index

58 all docs 58 docs citations 58 times ranked 11623 citing authors

#	Article	IF	Citations
1	Genome doubling causes double trouble. Nature, 2022, 604, 44-45.	13.7	1
2	Whole-Genome Duplication Shapes the Aneuploidy Landscape of Human Cancers. Cancer Research, 2022, 82, 1736-1752.	0.4	25
3	DNA-based copy number analysis confirms genomic evolution of PDX models. Npj Precision Oncology, 2022, 6, 30.	2.3	10
4	Frequent aneuploidy in primary human T cells after CRISPR–Cas9 cleavage. Nature Biotechnology, 2022, 40, 1807-1813.	9.4	81
5	Aneuploidy renders cancer cells vulnerable to mitotic checkpoint inhibition. Nature, 2021, 590, 486-491.	13.7	135
6	Relevance of aneuploidy for cancer therapies targeting the spindle assembly checkpoint and KIF18A. Molecular and Cellular Oncology, 2021, 8, 1915075.	0.3	2
7	FOXM1 repression increases mitotic death upon antimitotic chemotherapy through BMF upregulation. Cell Death and Disease, 2021, 12, 542.	2.7	10
8	Aneuploid senescent cells activate NFâ€₽B to promote their immune clearance by NK cells. EMBO Reports, 2021, 22, e52032.	2.0	42
9	Gene copy-number changes and chromosomal instability induced by aneuploidy confer resistance to chemotherapy. Developmental Cell, 2021, 56, 2440-2454.e6.	3.1	87
10	Context is everything: aneuploidy in cancer. Nature Reviews Genetics, 2020, 21, 44-62.	7.7	407
11	Adding to the CASeload: unwarranted p53 signaling induced by Cas9. Molecular and Cellular Oncology, 2020, 7, 1789419.	0.3	O
12	Aneuploidy increases resistance to chemotherapeutics by antagonizing cell division. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30566-30576.	3.3	43
13	Cas9 activates the p53 pathway and selects for p53-inactivating mutations. Nature Genetics, 2020, 52, 662-668.	9.4	168
14	Elevated expression of <scp><i>ACE2</i></scp> in tumorâ€adjacent normal tissues of cancer patients. International Journal of Cancer, 2020, 147, 3264-3266.	2.3	9
15	Discovering the anticancer potential of non-oncology drugs by systematic viability profiling. Nature Cancer, 2020, 1, 235-248.	5.7	430
16	Genomic evolution of cancer models: perils and opportunities. Nature Reviews Cancer, 2019, 19, 97-109.	12.8	158
17	Report of the Key Opinion Leaders Meeting on Stem Cell-derived Beta Cells. Transplantation, 2018, 102, 1223-1229.	0.5	72
18	Somatic loss of WWOX is associated with TP53 perturbation in basal-like breast cancer. Cell Death and Disease, 2018, 9, 832.	2.7	26

#	Article	IF	CITATIONS
19	Genetic and transcriptional evolution alters cancer cell line drug response. Nature, 2018, 560, 325-330.	13.7	662
20	Patient-derived xenografts undergo mouse-specific tumor evolution. Nature Genetics, 2017, 49, 1567-1575.	9.4	546
21	Landscape of Genomic Alterations in Pituitary Adenomas. Clinical Cancer Research, 2017, 23, 1841-1851.	3.2	94
22	The landscape of chromosomal aberrations in breast cancer mouse models reveals driver-specific routes to tumorigenesis. Nature Communications, 2016, 7, 12160.	5.8	43
23	Genomic Copy Number Dictates a Gene-Independent Cell Response to CRISPR/Cas9 Targeting. Cancer Discovery, 2016, 6, 914-929.	7.7	485
24	Genomic Instability in Human Pluripotent Stem Cells Arises from Replicative Stress and Chromosome Condensation Defects. Cell Stem Cell, 2016, 18, 253-261.	5.2	106
25	Concise Review: Workshop Review: Understanding and Assessing the Risks of Stem Cell-Based Therapies. Stem Cells Translational Medicine, 2015, 4, 389-400.	1.6	98
26	Brief Reports: Controlling the Survival of Human Pluripotent Stem Cells by Small Molecule-Based Targeting of Topoisomerase II Alpha. Stem Cells, 2015, 33, 1013-1019.	1.4	15
27	Genomic instability, driver genes and cell selection: Projections from cancer to stem cells. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 427-435.	0.9	20
28	Elimination of undifferentiated cancer cells by pluripotent stem cell inhibitors. Journal of Molecular Cell Biology, 2014, 6, 267-269.	1.5	12
29	Virtual Karyotyping Reveals Greater Chromosomal Stability in Neural Cells Derived by Transdifferentiation than Those from Stem Cells. Cell Stem Cell, 2014, 15, 687-691.	5.2	24
30	Genome maintenance in pluripotent stem cells. Journal of Cell Biology, 2014, 204, 153-163.	2.3	157
31	Aneuploidy induces profound changes in gene expression, proliferation and tumorigenicity of human pluripotent stem cells. Nature Communications, 2014, 5, 4825.	5.8	148
32	Chemical ablation of tumor-initiating human pluripotent stem cells. Nature Protocols, 2014, 9, 729-740.	5.5	46
33	Analyzing the genomic integrity of stem cells. Stembook, 2014, , .	0.3	4
34	Selective Elimination of Human Pluripotent Stem Cells by an Oleate Synthesis Inhibitor Discovered in a High-Throughput Screen. Cell Stem Cell, 2013, 12, 167-179.	5.2	277
35	New Balance in Pluripotency: Reprogramming with Lineage Specifiers. Cell, 2013, 153, 939-940.	13.5	9
36	Virtual karyotyping of pluripotent stem cells on the basis of their global gene expression profiles. Nature Protocols, 2013, 8, 989-997.	5.5	44

#	Article	lF	CITATIONS
37	Flowing through the CRISPR-CAScade: Will genome editing boost cell therapies?. Molecular and Cellular Therapies, 2013, 1, 3.	0.2	2
38	Immunologic and chemical targeting of the tight-junction protein Claudin-6 eliminates tumorigenic human pluripotent stem cells. Nature Communications, 2013, 4, 1992.	5.8	132
39	SMRT compounds abrogate cellular phenotypes of ataxia telangiectasia in neural derivatives of patient-specific hiPSCs. Nature Communications, 2013, 4, 1824.	5 . 8	33
40	Significant Acquisition of Chromosomal Aberrations in Human Adult Mesenchymal Stem Cells: Response to Sensebé etÂal Cell Stem Cell, 2012, 10, 10-11.	5.2	32
41	Expanding the Boundaries of Embryonic Stem Cells. Cell Stem Cell, 2012, 10, 666-677.	5.2	58
42	High Prevalence of Evolutionarily Conserved and Species-Specific Genomic Aberrations in Mouse Pluripotent Stem Cells. Stem Cells, 2012, 30, 612-622.	1.4	48
43	Assessing the Safety of Stem Cell Therapeutics. Cell Stem Cell, 2011, 8, 618-628.	5.2	205
44	Large-Scale Analysis Reveals Acquisition of Lineage-Specific Chromosomal Aberrations in Human Adult Stem Cells. Cell Stem Cell, 2011, 9, 97-102.	5.2	218
45	The tumorigenicity of human embryonic and induced pluripotent stem cells. Nature Reviews Cancer, 2011, 11, 268-277.	12.8	785
46	Genetic instability in human induced pluripotent stem cells: Classification of causes and possible safeguards. Cell Cycle, 2010, 9, 4603-4604.	1.3	42
47	Identification and Classification of Chromosomal Aberrations in Human Induced Pluripotent Stem	5.2	695