
Natasa Novak Tusar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1004278/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluation of Au/ZrO2 Catalysts Prepared via Postsynthesis Methods in CO2 Hydrogenation to Methanol. Catalysts, 2022, 12, 218.	3.5	13
2	Studies of Clinoptilolite-Rich Zeolitic Tuffs from Different Regions and Their Activity in Photodegradation of Methylene Blue. Catalysts, 2022, 12, 224.	3.5	5
3	Insight into the interdependence of Ni and Al in bifunctional Ni/ZSM-5 catalysts at the nanoscale. Nanoscale Advances, 2022, 4, 2321-2331.	4.6	3
4	Influence of Alumina Precursor Properties on Cu-Fe Alumina Supported Catalysts for Total Toluene Oxidation as a Model Volatile Organic Air Pollutant. Catalysts, 2021, 11, 252.	3.5	6
5	Exploring the effect of morphology and surface properties of nanoshaped Pd/CeO2 catalysts on CO2 hydrogenation to methanol. Applied Catalysis A: General, 2021, 627, 118394.	4.3	22
6	Defective Grey TiO2 with Minuscule Anatase–Rutile Heterophase Junctions for Hydroxyl Radicals Formation in a Visible Light-Triggered Photocatalysis. Catalysts, 2021, 11, 1500.	3.5	3
7	In-depth structural characterization and magnetic properties of quaternary ferrite systems Co0.5Zn0.25M0.25Fe2O4 (MÂ= Ni, Cu, Mn, Mg). Journal of Alloys and Compounds, 2020, 816, 152674.	5.5	9
8	SnO2-Containing Clinoptilolite as a Composite Photocatalyst for Dyes Removal from Wastewater under Solar Light. Catalysts, 2020, 10, 253.	3.5	25
9	Synergistic effect of CuO nanocrystals and Cu-oxo-Fe clusters on silica support in promotion of total catalytic oxidation of toluene as a model volatile organic air pollutant. Applied Catalysis B: Environmental, 2020, 268, 118749.	20.2	63
10	Bimetal Cu-Mn porous silica-supported catalyst for Fenton-like degradation of organic dyes in wastewater at neutral pH. Catalysis Today, 2020, 358, 270-277.	4.4	32
11	Evolution of Surface Catalytic Sites on Bimetal Silica-Based Fenton-Like Catalysts for Degradation of Dyes with Different Molecular Charges. Nanomaterials, 2020, 10, 2419.	4.1	6
12	New Insights into Manganese Local Environment in MnS-1 Nanocrystals. Crystal Growth and Design, 2019, 19, 3130-3138.	3.0	7
13	Cu and Zr surface sites in photocatalytic activity of TiO2 nanoparticles: The effect of Zr distribution. Catalysis Today, 2019, 328, 105-110.	4.4	4
14	TiO2/SiO2 Films for Removal of Volatile Organic Compounds (VOCs) from Indoor Air. , 2019, , 589-605.		0
15	Surface modified titanium dioxide using transition metals: nickel as a winning transition metal for solar light photocatalysis. Journal of Materials Chemistry A, 2018, 6, 9882-9892.	10.3	43
16	Novel magnetic nanocomposites containing quaternary ferrites systems Co0.5Zn0.25M0.25Fe2O4 (M = Ni, Cu, Mn, Mg) and TiO2-anatase phase as photocatalysts for wastewater remediation under solar light irradiation. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2018, 230, 1-7.	3.5	48
17	Titania versus zinc oxide nanoparticles on mesoporous silica supports as photocatalysts for removal of dyes from wastewater at neutral pH. Catalysis Today, 2018, 310, 32-41.	4.4	89
18	Conversion of Palmitic Acid Over Bi-functional Ni/ZSM-5 Catalyst: Effect of Stoichiometric Ni/Al Molar Ratio. Topics in Catalysis, 2018, 61, 1757-1768.	2.8	32

NATASA NOVAK TUSAR

#	Article	IF	CITATIONS
19	Vapor-Phase Hydrogenation of Levulinic Acid to γ-Valerolactone Over Bi-Functional Ni/HZSM-5 Catalyst. Frontiers in Chemistry, 2018, 6, 285.	3.6	30
20	TiO2/SiO2 Films for Removal of Volatile Organic Compounds (VOCs) from Indoor Air. , 2018, , 1-17.		1
21	Enhanced photocatalytic activity of carbon and zirconium modified TiO2. Catalysis Today, 2017, 284, 215-220.	4.4	19
22	Photocatalytic Activity of Zirconium―and Manganeseâ€Codoped Titania in Aqueous Media: The Role of the Metal Dopant and its Incorporation Site. ChemCatChem, 2016, 8, 2109-2118.	3.7	4
23	Synthesis of biomass derived levulinate esters on novel sulfated Zr/KIL-2 composite catalysts. Microporous and Mesoporous Materials, 2016, 235, 50-58.	4.4	12
24	TiO2–SiO2 films from organic-free colloidal TiO2 anatase nanoparticles as photocatalyst for removal of volatile organic compounds from indoor air. Applied Catalysis B: Environmental, 2016, 184, 119-131.	20.2	115
25	Inâ€situ Generation of Ni Nanoparticles from Metal–Organic Framework Precursors and Their Use for Biomass Hydrodeoxygenation. ChemSusChem, 2015, 8, 1703-1710.	6.8	26
26	Manganese modified zeolite silicalite-1 as polysulphide sorbent in lithium sulphur batteries. Journal of Power Sources, 2015, 274, 1239-1248.	7.8	35
27	Active Iron Sites of Disordered Mesoporous Silica Catalyst FeKIL-2 in the Oxidation of Volatile Organic Compounds (VOC). Materials, 2014, 7, 4243-4257.	2.9	16
28	Autoreduction of Copper on Silica and Ironâ€Functionalized Silica Nanoparticles with Interparticle Mesoporosity. ChemCatChem, 2014, 6, 271-277.	3.7	15
29	Glycerol acetylation on mesoporous KIL-2 supported sulphated zirconia catalysts. Catalysis Science and Technology, 2014, 4, 3993-4000.	4.1	40
30	ZSM-5/SBA-15 microporous/mesoporous composites prepared by a microwave-assisted zeolitisation of Al-SBA-15 mesoporous solids. Materials Research Bulletin, 2013, 48, 1288-1295.	5.2	13
31	Photocatalytic degradation of gaseous toluene by using immobilized titania/silica on aluminum sheets. Environmental Science and Pollution Research, 2012, 19, 3735-3742.	5.3	32
32	Manganese Functionalized Silicate Nanoparticles as a Fentonâ€Type Catalyst for Water Purification by Advanced Oxidation Processes (AOP). Advanced Functional Materials, 2012, 22, 820-826.	14.9	157
33	Photocatalytic oxidation of gaseous toluene on titania/mesoporous silica powders in a fluidized-bed reactor. Catalysis Today, 2011, 161, 181-188.	4.4	39
34	MnO _{<i>x</i>} Nanoparticles Supported on a New Mesostructured Silicate with Textural Porosity. Chemistry - A European Journal, 2010, 16, 5783-5793.	3.3	40
35	Titania-containing mesoporous silica powders: Structural properties and photocatalytic activity towards isopropanol degradation. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 216, 167-178.	3.9	45
36	Thin films of cubic mesoporous aluminophosphates modified by silicon and manganese. Microporous and Mesoporous Materials, 2010, 135, 161-169.	4.4	11

#	Article	IF	CITATIONS
	Kinetic Analysis of Isothermal Crystallization of Potassium Aluminosilicate Ceramics (Leucite and) Tj ETQq1		
37	10, 838-844.	3.0	7
38	Hyperpolarized 129Xe NMR and N2 sorption cross-investigations of the crystallization of Al-SBA-15 amorphous walls into ZSM-5 type materials. Journal of Porous Materials, 2009, 16, 349-359.	2.6	9
39	Synthesis and structural investigations on aluminium-free Ti-Beta/SBA-15 composite. Microporous and Mesoporous Materials, 2009, 117, 458-465.	4.4	26
40	The influences of the way of preparation of Me-aluminosilicates (Me=Li, Na, K, Rb and Cs) on the products. Microporous and Mesoporous Materials, 2008, 112, 542-552.	4.4	4
41	Manganese-modified porous silicates. Studies in Surface Science and Catalysis, 2008, 174, 73-78.	1.5	2
42	57Fe Mössbauer study of iron distribution in zeolite A during zeolite crystallization process. Studies in Surface Science and Catalysis, 2008, 174, 929-932.	1.5	0
43	Synthesis and structural properties of titanium containing microporous/mesoporous silicate composite (Ti, Al)-Beta/MCM-48. Microporous and Mesoporous Materials, 2007, 99, 3-13.	4.4	24
44	Local environment of isolated iron in mesoporous silicate catalyst FeTUD-1. Microporous and Mesoporous Materials, 2007, 104, 289-295.	4.4	8
45	Investigation of the catalytic activity of extracted and smoothly calcined arenesulfonic modified SBA-15 materials. Journal of Molecular Catalysis A, 2007, 271, 117-125.	4.8	13
46	Manganese-modified hexagonal mesoporous aluminophosphate MnHMA: Synthesis and characterization. Microporous and Mesoporous Materials, 2006, 96, 386-395.	4.4	14
47	Sorption of Cr3+ on clinoptilolite tuff: A structural investigation. Microporous and Mesoporous Materials, 2006, 93, 275-284.	4.4	18
48	Titanium containing microporous/mesoporous composite (Ti,Al)-Beta/MCM-41: Synthesis and characterization. Microporous and Mesoporous Materials, 2006, 95, 76-85.	4.4	23
49	Monitoring the crystallization process of a zeolite structure on SBA-15 mesopore walls. New Journal of Chemistry, 2006, 30, 1163-1170.	2.8	19
50	Local environment of manganese incorporated in mesoporous MCM-41. Microporous and Mesoporous Materials, 2005, 82, 129-136.	4.4	18
51	Local environment of iron in the mesoporous hexagonal aluminophosphate catalyst. Microporous and Mesoporous Materials, 2005, 87, 52-58.	4.4	8
52	Investigations on iron substitution in VPI-5 and its redox behavior. Microporous and Mesoporous Materials, 2004, 76, 61-69.	4.4	8
53	Manganese-Containing Silica-Based Microporous Molecular Sieve MnS-1:  Synthesis and Characterization. Chemistry of Materials, 2003, 15, 4745-4750.	6.7	33
54	Large-Pore FAPO-36:Â Synthesis and Characterization. Chemistry of Materials, 2003, 15, 3643-3649.	6.7	26

NATASA NOVAK TUSAR

#	Article	IF	CITATIONS
55	Interaction of Dipropylamine Template Molecules with the Framework of as-Synthesized AlPO4-31. Journal of Physical Chemistry B, 2002, 106, 63-69.	2.6	17
56	Framework cobalt and manganese in MeAPO-31 (Me=Co, Mn) molecular sieves. Microporous and Mesoporous Materials, 2002, 55, 203-216.	4.4	31
57	Incorporation of heteroatoms (Me=Zn, Co, Mn) into framework sites of the gallophosphate molecular sieve ULM-5. Microporous and Mesoporous Materials, 2002, 56, 257-266.	4.4	7
58	Synthesis and characterization of triclinic MeAPO-34 (Me=Zn, Fe) molecular sieves. Microporous and Mesoporous Materials, 2002, 56, 303-315.	4.4	20
59	EXAFS and NMR investigation of zinc, manganese and cobalt substituted aluminophosphates with the chabazite structure. Microporous Materials, 1996, 7, 271-284.	1.6	25
60	A zinc-rich CHA-type aluminophosphate. Zeolites, 1995, 15, 708-713.	0.5	37