
## Haiwen Cai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10042447/publications.pdf Version: 2024-02-01



HAIMEN CAL

| #  | Article                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Ultra-Low-Noise MIMO Distributed Acoustic Sensor Using Few-Mode Optical Fibers. Journal of<br>Lightwave Technology, 2022, 40, 3062-3071.                     | 4.6 | 6         |
| 2  | Frequency-Stabilized External Cavity Diode Laser at 1572 nm Based on Frequency Stability Transfer. IEEE<br>Photonics Technology Letters, 2022, 34, 203-206.  | 2.5 | 7         |
| 3  | Frequency stabilized ultra-low-noise DFB fiber laser based on intracavity dual mode frequency self-reference mechanism. , 2022, , .                          |     | 0         |
| 4  | Ultra-Stable Fiber Laser Based on Intracavity Dual Mode Self-Reference Mechanism. Journal of<br>Lightwave Technology, 2022, 40, 3923-3929.                   | 4.6 | 4         |
| 5  | A Low Temperature Coefficient Time-to-Digital Converter with 1.3 ps Resolution Implemented in a 28 nm FPGA. Sensors, 2022, 22, 2306.                         | 3.8 | 7         |
| 6  | Distributed optical fiber hydrophone based on $\hat{I}_i^+$ -OTDR and its field test. Optics Express, 2021, 29, 3147.                                        | 3.4 | 63        |
| 7  | Fiber-optic time-frequency transfer in gigabit ethernet networks over urban fiber links. Optics<br>Express, 2021, 29, 11693.                                 | 3.4 | 5         |
| 8  | Absolute phase marking technology and fiber-optic remote coherent phase transmission. Optics<br>Express, 2021, 29, 14041.                                    | 3.4 | 4         |
| 9  | Practical Performance Enhancement of DAS by Using Dense Multichannel Signal Integration. Journal of Lightwave Technology, 2021, 39, 6348-6354.               | 4.6 | 10        |
| 10 | High SNR Φ-OTDR with Multi-Transverse Modes Heterodyne Matched-Filtering Technology. Sensors, 2021, 21, 7460.                                                | 3.8 | 3         |
| 11 | Recent Progress in Distributed Fiber Acoustic Sensing with $\hat{I}_1^+$ -OTDR. Sensors, 2020, 20, 6594.                                                     | 3.8 | 63        |
| 12 | High SNR Φ-OTDR Based on Frequency and Wavelength Diversity With Differential Vector Aggregation<br>Method. IEEE Photonics Journal, 2020, 12, 1-12.          | 2.0 | 10        |
| 13 | Ultralow noise DFB fiber laser with self-feedback mechanics utilizing the inherent photothermal effect. Optics Express, 2020, 28, 23717.                     | 3.4 | 7         |
| 14 | Multi-source aliasing suppression for distributed fiber acoustic sensing with directionally coherent enhancement technology. Optics Letters, 2020, 45, 5672. | 3.3 | 15        |
| 15 | Fiber-optic joint time and frequency transfer with the same wavelength. Optics Letters, 2020, 45, 208.                                                       | 3.3 | 23        |
| 16 | Multifunctional photonic broadband RF memory for complex electronic jamming. Laser Physics<br>Letters, 2020, 17, 116201.                                     | 1.4 | 5         |
| 17 | Narrow linewidth swept laser source based on cascaded multi-wavelength injection of DFB lasers.<br>Applied Optics, 2020, 59, 9393.                           | 1.8 | 1         |
| 18 | Configurable photonic true-time delay network and its application in multi-beamforming. Laser<br>Physics Letters, 2019, 16, 126203.                          | 1.4 | 3         |

| #  | Article                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Photonic Radio Frequency Memory with Controlled Doppler Frequency Shift. , 2019, , .                                                                                 |     | 2         |
| 20 | Detailed Evaluation of Centroid Analysis for Extracting Brillouin Frequency Shift of Fiber Distributed<br>Sensors. IEEE Sensors Journal, 2019, 19, 163-170.          | 4.7 | 4         |
| 21 | Practical multi-class event classification approach for distributed vibration sensing using deep dual path network. Optics Express, 2019, 27, 23682.                 | 3.4 | 42        |
| 22 | Direct Measurement of Phase-related Parameters of Narrow-linewidth Lasers based on 120-degree<br>Phase Difference Interferometer. , 2019, , .                        |     | 0         |
| 23 | Noise Reduction of Single Frequency Fiber Lasers. , 2019, , .                                                                                                        |     | Ο         |
| 24 | Polarization influence and its mitigation on laser frequency noise measurement by a short-delayed self-homodyne interference method. Applied Optics, 2019, 58, 6693. | 1.8 | 4         |
| 25 | Photonic high-fidelity storage and Doppler frequency shift of broadband RF pulse signals. Optics Express, 2019, 27, 34359.                                           | 3.4 | 11        |
| 26 | Slow-Light Effect and Mode Selection of Double Fiber Ring With a Fiber Bragg Grating. IEEE Photonics<br>Journal, 2018, 10, 1-9.                                      | 2.0 | 3         |
| 27 | Narrow-linewidth swept laser phase reconstruction and noise measurement technology and its applications. Optics Express, 2018, 26, 32958.                            | 3.4 | 8         |
| 28 | Ultra-low noise optical injection locking amplifier with AOM-based coherent detection scheme.<br>Scientific Reports, 2018, 8, 13135.                                 | 3.3 | 8         |
| 29 | Configurable Photonic True-Time Delay Line Based On Cascaded Linearly Chirped Fiber Bragg Grating. ,<br>2018, , .                                                    |     | 4         |
| 30 | Brillouin Frequency Shift of Fiber Distributed Sensors Extracted from Noisy Signals by Quadratic<br>Fitting. Sensors, 2018, 18, 409.                                 | 3.8 | 17        |
| 31 | High spatial resolution $\hat{I} $ -OTDR with long sensing distance. , 2018, , .                                                                                     |     | 4         |
| 32 | Low noise single frequency DFB fiber laser. , 2018, , .                                                                                                              |     | 0         |
| 33 | Pulse compression phase sensitive optical time domain reflectometer with sub-meter resolution. , 2017, , .                                                           |     | 2         |
| 34 | Novel railway-subgrade vibration monitoring technology using phase-sensitive OTDR. Proceedings of SPIE, 2017, , .                                                    | 0.8 | 17        |
| 35 | Single Frequency Semiconductor Lasers. Optical and Fiber Communications Reports, 2017, , .                                                                           | 0.1 | 9         |
| 36 | Frequency Sweeping of Semiconductor Lasers. Optical and Fiber Communications Reports, 2017, , 205-234.                                                               | 0.1 | 0         |

| #  | Article                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Optical Phase Locked Loop and Frequency Transfer. Optical and Fiber Communications Reports, 2017, , 235-266.                                                       | 0.1 | Ο         |
| 38 | Characteristics of double fiber ring incorporated with a fiber Bragg grating. , 2017, , .                                                                          |     | 0         |
| 39 | 120° Phase Difference Interference Technology Based on 3 × 3 Coupler and its Application in Laser<br>Noise Measurement. , 2017, , .                                |     | 1         |
| 40 | High spatial resolution phase-sensitive optical time domain reflectometer with a frequency-swept pulse. Optics Letters, 2017, 42, 391.                             | 3.3 | 99        |
| 41 | Frequency Stabilization of Semiconductor Lasers. Optical and Fiber Communications Reports, 2017, , 167-204.                                                        | 0.1 | Ο         |
| 42 | Noises and Stability of Semiconductor Lasers. Optical and Fiber Communications Reports, 2017, , 41-79.                                                             | 0.1 | 1         |
| 43 | External Cavity Semiconductor Lasers. Optical and Fiber Communications Reports, 2017, , 117-166.                                                                   | 0.1 | О         |
| 44 | Applications of Single-Frequency Semiconductor Lasers. Optical and Fiber Communications Reports, 2017, , 267-302.                                                  | 0.1 | 1         |
| 45 | Subkilohertz linewidth reduction of a DFB diode laser using self-injection locking with a fiber Bragg grating Fabry-Perot cavity. Optics Express, 2016, 24, 17406. | 3.4 | 55        |
| 46 | Photothermal effects in phase shifted FBG with varied light wavelength and intensity. Optics Express, 2016, 24, 25370.                                             | 3.4 | 8         |
| 47 | Research on laser induced damage in PLZT electro-optical transparent ceramic. Optical Materials<br>Express, 2016, 6, 952.                                          | 3.0 | 4         |
| 48 | Narrow linewidth hybrid integrated external cavity diode laser for precision applications.<br>Proceedings of SPIE, 2016, , .                                       | 0.8 | 0         |
| 49 | All-optical noise reduction of fiber laser via intracavity SOA structure. Applied Optics, 2016, 55, 8185.                                                          | 2.1 | 1         |
| 50 | Intensity noise reduction technique of fiber laser via intracavity SOA structure. , 2016, , .                                                                      |     | 0         |
| 51 | Laser phase noise measurement by using an adjustment-free Michelson interferometer based on 3×3 optical coupler. , 2015, , .                                       |     | 1         |
| 52 | Ultra-broadband phase-sensitive optical time-domain reflectometry with a temporally sequenced multi-frequency source. Optics Letters, 2015, 40, 5192.              | 3.3 | 90        |
| 53 | Narrow-linewidth laser source with precision frequency tunability for distributed optical sensing applications. , 2015, , .                                        |     | 0         |
| 54 | White light cavity via modification of linear and nonlinear dispersion in an N-type atomic system.<br>Optics Communications, 2015, 342, 189-192.                   | 2.1 | 9         |

| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Novel Slow-light Reflector Composed of a Fiber Ring Resonator and Low-reflectivity Fiber Bragg<br>Grating. Journal of Lightwave Technology, 2015, , 1-1.                                                                       | 4.6 | 3         |
| 56 | Precision and broadband frequency swept laser source based on high-order modulation-sideband injection-locking. Optics Express, 2015, 23, 4970.                                                                                | 3.4 | 47        |
| 57 | Fast optical frequency sweeping using voltage controlled oscillator driven single sideband modulation combined with injection locking. Optics Express, 2015, 23, 7038.                                                         | 3.4 | 20        |
| 58 | Continuous angle steering of an optically- controlled phased array antenna based on differential true time delay constituted by micro-optical components. Optics Express, 2015, 23, 9432.                                      | 3.4 | 20        |
| 59 | Laser phase and frequency noise measurement by Michelson interferometer composed of a 3 × 3 optical fiber coupler. Optics Express, 2015, 23, 22386.                                                                            | 3.4 | 107       |
| 60 | Laser frequency offset locking via tripod-type electromagnetically induced transparency. Applied Optics, 2014, 53, 2632.                                                                                                       | 1.8 | 6         |
| 61 | All-optical frequency stabilization and linewidth reduction of distributed feedback diode lasers by polarization rotated optical feedback. Optics Express, 2014, 22, 15757.                                                    | 3.4 | 7         |
| 62 | Observation of multi-electromagnetically induced transparency in V-type rubidium atoms. Journal of<br>Modern Optics, 2014, 61, 631-635.                                                                                        | 1.3 | 20        |
| 63 | Realization of cavity linewidth narrowing via interacting dark resonances in a tripod-type<br>electromagnetically induced transparency system. Journal of the Optical Society of America B: Optical<br>Physics, 2014, 31, 144. | 2.1 | 15        |
| 64 | High sampling rate multi-pulse phase-sensitive OTDR employing frequency division multiplexing.<br>Proceedings of SPIE, 2014, , .                                                                                               | 0.8 | 6         |
| 65 | Polarization-independent electro-optic modulator based on PMNT electrically-controlled birefringence effect and Sagnac interferometer. Optics and Laser Technology, 2014, 57, 5-8.                                             | 4.6 | 11        |
| 66 | Fiber Ring With Long Delay Used as a Cavity Mirror for Narrowing Fiber Laser. IEEE Photonics<br>Technology Letters, 2014, 26, 1621-1624.                                                                                       | 2.5 | 15        |
| 67 | Cavity linewidth narrowing by optical pumping-assisted electromagnetically induced transparency in<br>V-type rubidium at room temperature. Journal of Modern Optics, 2014, 61, 322-327.                                        | 1.3 | 5         |
| 68 | Characteristics and Explanations of Interference Fading of a \$phi \$-OTDR With a Multi-Frequency<br>Source. Journal of Lightwave Technology, 2013, 31, 2947-2954.                                                             | 4.6 | 134       |
| 69 | Numeral analysis of spectral shaping based on superstructure fiber Bragg grating in high-power<br>Nd:glass chirped pulse amplification system. Optik, 2013, 124, 471-476.                                                      | 2.9 | 3         |
| 70 | Modulation-Free Frequency Stabilization Based on Polarization-Split Sagnac Loop. IEEE Photonics<br>Technology Letters, 2013, 25, 1031-1034.                                                                                    | 2.5 | 6         |
| 71 | Analysis of spontaneous Brillouin scattering spectrum for different modulated pulse shape. Optik,<br>2013, 124, 2417-2420.                                                                                                     | 2.9 | 6         |
| 72 | Effects of modulated pulse format on spontaneous Brillouin scattering spectrum and BOTDR sensing system. Optics and Laser Technology, 2013, 46, 37-41.                                                                         | 4.6 | 14        |

| #  | Article                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Interference-fading-free phase-demodulated OTDR system. Proceedings of SPIE, 2012, , .                                                                                                               | 0.8 | 36        |
| 74 | Design of Wide-Band Frequency Shift Technology by Using Compact Brillouin Fiber Laser for Brillouin<br>Optical Time Domain Reflectometry Sensing System. IEEE Photonics Journal, 2012, 4, 1686-1692. | 2.0 | 16        |
| 75 | Improvement of pulse shape on Brillouin optical time domain reflectometry. , 2012, , .                                                                                                               |     | 1         |
| 76 | Analysis and Implementation of Reflection-Type Electro-Optic Phase Diffraction Grating. Journal of Lightwave Technology, 2012, 30, 2796-2802.                                                        | 4.6 | 5         |
| 77 | 100-mW linear polarization single-frequency all-fiber seed laser for coherent Doppler lidar application. Optics Communications, 2012, 285, 149-152.                                                  | 2.1 | 57        |
| 78 | Phase-sensitive OTDR system based on digital coherent detection. Proceedings of SPIE, 2011, , .                                                                                                      | 0.8 | 71        |
| 79 | Tunable External Cavity Diode Laser with a PLZT Electro-Optic Ceramic Deflector. IEEE Photonics<br>Technology Letters, 2011, , .                                                                     | 2.5 | 6         |
| 80 | Mode-hop-free electro-optically tuned external-cavity diode laser using volume Bragg grating and PLZT ceramic. Optics Express, 2011, 19, 17244.                                                      | 3.4 | 11        |
| 81 | High-efficiency electrically tunable phase diffraction grating based on a transparent lead magnesium niobate-lead titanite electro-optic ceramic. Optics Letters, 2011, 36, 2453.                    | 3.3 | 12        |
| 82 | Optical characteristics of transparent PMNT ceramic and its application at high speed electro-optic switch. Optics Communications, 2011, 284, 3886-3890.                                             | 2.1 | 21        |
| 83 | Synthesis of fiber Bragg grating for gain-narrowing compensation in high-power Nd: Glass chirped pulse amplification system. Optical Fiber Technology, 2011, 17, 185-190.                            | 2.7 | 6         |
| 84 | Phase-sensitive OTDR system based on digital coherent detection. , 2011, , .                                                                                                                         |     | 28        |
| 85 | Orientation-free pressure sensor based on π-shifted single-mode-fiber Sagnac interferometer. Applied<br>Optics, 2010, 49, 5043.                                                                      | 2.1 | 10        |
| 86 | Modulation-free frequency stabilization of external-cavity diode laser based on a phase-difference biased Sagnac interferometer. Optics Letters, 2010, 35, 3853.                                     | 3.3 | 10        |
| 87 | Fiber Sagnac π-shifted interferometer for a polarization-independent PMNT high-speed electro-optic<br>switch. Optics Letters, 2010, 35, 4187.                                                        | 3.3 | 11        |
| 88 | Numerical Investigation of Ultrashort Complex Pulse Generation Based on Pulse Shaping Using a<br>Superstructure Fiber Bragg Grating. Journal of Lightwave Technology, 2009, 27, 2449-2456.           | 4.6 | 8         |
| 89 | Polarization Characteristics of an External Cavity Diode Laser With Littman–Metcalf Configuration.<br>IEEE Photonics Technology Letters, 2009, 21, 984-986.                                          | 2.5 | 7         |
| 90 | Stabilization of optical Fabry–Perot sensor by active feedback control of diode laser. Sensors and<br>Actuators A: Physical, 2008, 148, 376-380.                                                     | 4.1 | 25        |

| #  | Article                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Instabilities in a grating feedback external cavity semiconductor laser. Optics Express, 2008, 16, 17014.                             | 3.4 | 13        |
| 92 | A fiber Bragg grating with triangular spectrum as wavelength readout in sensor systems. Optics<br>Communications, 2004, 229, 197-201. | 2.1 | 31        |
| 93 | Line-shape of Delayed Self-heterodyne Varied withNoise Types and Delays. Applied Optics, 0, , .                                       | 1.8 | 1         |