Haibin Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10042047/publications.pdf Version: 2024-02-01

HAIRIN TANC

#	Article	IF	CITATIONS
1	AAO Template-Assisted Fabrication of Ordered Ag Nanoparticles-Decorated Au Nanotubes Array for Surface-Enhanced Raman Scattering Detection. Sustainability, 2022, 14, 1305.	1.6	6
2	Efficient electrocatalytic reduction of nitrate to nitrogen gas by a cubic Cu ₂ O film with predominant (111) orientation. Chemical Communications, 2022, 58, 3613-3616.	2.2	11
3	Na <i>_y</i> WO _{3–<i>x</i>} Nanosheet Array via <i>In Situ</i> Na Intercalation for Surface-Enhanced Raman Scattering Detection of Methylene Blue. ACS Applied Nano Materials, 2022, 5, 7841-7849.	2.4	8
4	Visible-Light Localized Surface Plasmon Resonance of WO _{3–<i>x</i>} Nanosheets and Its Photocatalysis Driven by Plasmonic Hot Carriers. ACS Sustainable Chemistry and Engineering, 2021, 9, 1500-1506.	3.2	39
5	Plasmonic hot electrons for sensing, photodetection, and solar energy applications: A perspective. Journal of Chemical Physics, 2020, 152, 220901.	1.2	141
6	Review—Surface-Enhanced Raman Scattering Sensors for Food Safety and Environmental Monitoring. Journal of the Electrochemical Society, 2018, 165, B3098-B3118.	1.3	147
7	Fabrication of hexagonally patterned flower-like silver particle arrays as surface-enhanced Raman scattering substrates. Nanotechnology, 2016, 27, 325303.	1.3	7
8	Ag Nanoparticleâ€Grafted PANâ€Nanohump Array Films with 3D Highâ€Density Hot Spots as Flexible and Reliable SERS Substrates. Small, 2015, 11, 5452-5459.	5.2	112
9	Photocatalytic degradation of 2,4,4′-trichlorobiphenyl into long-chain alkanes using Ag nanoparticle decorated flower-like ZnO microspheres. New Journal of Chemistry, 2015, 39, 7781-7785.	1.4	4
10	CNTs-anchored egg shell membrane decorated with Ag-NPs as cheap but effective SERS substrates. Science China Materials, 2015, 58, 198-203.	3.5	16
11	Hexagonally arranged arrays of urchin-like Ag hemispheres decorated with Ag nanoparticles for surface-enhanced Raman scattering substrates. Nano Research, 2015, 8, 2261-2270.	5.8	33
12	ZnO-nanotaper array sacrificial templated synthesis of noble-metal building-block assembled nanotube arrays as 3D SERS-substrates. Nano Research, 2015, 8, 957-966.	5.8	62
13	Ag-nanoparticles-decorated NiO-nanoflakes grafted Ni-nanorod arrays stuck out of porous AAO as effective SERS substrates. Physical Chemistry Chemical Physics, 2014, 16, 3686.	1.3	39
14	Urchin-like Au-nanoparticles@Ag-nanohemisphere arrays as active SERS-substrates for recognition of PCBs. RSC Advances, 2014, 4, 19654-19657.	1.7	15
15	Polyacrylic acid sodium salt film entrapped Ag-nanocubes as molecule traps for SERS detection. Nano Research, 2014, 7, 1177-1187.	5.8	29
16	Arrays of Coneâ€Shaped ZnO Nanorods Decorated with Ag Nanoparticles as 3D Surfaceâ€Enhanced Raman Scattering Substrates for Rapid Detection of Trace Polychlorinated Biphenyls. Advanced Functional Materials, 2012, 22, 218-224.	7.8	312