List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10041578/publications.pdf Version: 2024-02-01

SHUAL HAO

#	Article	IF	CITATIONS
1	Optimizing surface residual alkali and enhancing electrochemical performance of LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂ cathode by LiH ₂ PO ₄ . Nanotechnology, 2022, 33, 045404.	2.6	7
2	Dual functions of zirconium metaphosphate modified high-nickel layered oxide cathode material with enhanced electrochemical performance. Journal of Colloid and Interface Science, 2022, 615, 554-562.	9.4	7
3	Long-chain fluorocarbon-driven hybrid solid polymer electrolyte for lithium metal batteries. Journal of Materials Chemistry A, 2022, 10, 4881-4888.	10.3	12
4	Bistrifluoroacetamideâ€Activated Double‣ayer Composite Solid Electrolyte for Dendriteâ€Free Lithium Metal Battery. Advanced Materials Interfaces, 2022, 9, .	3.7	10
5	High sensitivity of multi-sensing materials based on reduced graphene oxide and natural rubber: The synergy between filler segregation and macro-porous morphology. Composites Science and Technology, 2021, 205, 108689.	7.8	41
6	Well-aligned MXene/chitosan films with humidity response for high-performance electromagnetic interference shielding. Carbohydrate Polymers, 2020, 243, 116467.	10.2	118
7	An anisotropic layer-by-layer carbon nanotube/boron nitride/rubber composite and its application in electromagnetic shielding. Nanoscale, 2020, 12, 7782-7791.	5.6	68
8	Multifunctional Integration of Double-Shell Hybrid Nanostructure for Alleviating Surface Degradation of LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Cathode for Advanced Lithium-Ion Batteries at High Cutoff Voltage. ACS Applied Materials & Interfaces, 2020, 12, 9268-9276.	8.0	66
9	Constructing 3D Graphene Network in Rubber Nanocomposite via Liquid-Phase Redispersion and Self-Assembly. ACS Applied Materials & Interfaces, 2020, 12, 9682-9692.	8.0	29
10	Enhancing surface stability of LiNi0.8Co0.1Mn0.1O2 cathode with hybrid core-shell nanostructure induced by high-valent titanium ions for Li-ion batteries at high cut-off voltage. Journal of Alloys and Compounds, 2020, 834, 155099.	5.5	41
11	Full water splitting by a nanoporous CeO ₂ nanowire array under alkaline conditions. Inorganic Chemistry Frontiers, 2020, 7, 2533-2537.	6.0	20
12	Simultaneous reduction and surface functionalization of graphene oxide by cystamine dihydrochloride for rubber composites. Composites Part A: Applied Science and Manufacturing, 2019, 122, 18-26.	7.6	23
13	Enhancing the Electrochemical Performance of Ni-Rich Layered Oxide Cathodes by Combination of the Gradient Doping and Dual-Conductive Layers Coating. ACS Applied Energy Materials, 2019, 2, 3120-3130.	5.1	59
14	Simultaneous reduction and surface functionalization of graphene oxide and the application for rubber composites. Journal of Applied Polymer Science, 2019, 136, 47375.	2.6	12
15	Dual functions of gradient phosphate polyanion doping on improving the electrochemical performance of Ni-rich LiNi0.6Co0.2Mn0.2O2 cathode at high cut-off voltage and high temperature. Electrochimica Acta, 2019, 299, 971-978.	5.2	76
16	Core–Shell NiO@Niâ€₽ Hybrid Nanosheet Array for Synergistically Enhanced Oxygen Evolution Electrocatalysis: Experimental and Theoretical Insights. Chemistry - an Asian Journal, 2018, 13, 944-949.	3.3	9
17	A self-supported amorphous Ni–P alloy on a CuO nanowire array: an efficient 3D electrode catalyst for water splitting in alkaline media. Chemical Communications, 2018, 54, 2393-2396.	4.1	77
18	<i>In situ</i> development of amorphous Mn–Co–P shell on MnCo ₂ O ₄ nanowire array for superior oxygen evolution electrocatalysis in alkaline media. Chemical Communications, 2018, 54, 1077-1080.	4.1	49

#	Article	IF	CITATIONS
19	Selective phosphidation: an effective strategy toward CoP/CeO ₂ interface engineering for superior alkaline hydrogen evolution electrocatalysis. Journal of Materials Chemistry A, 2018, 6, 1985-1990.	10.3	212
20	Determination of Trace lead (II) by Resonance Light Scattering Based on Pb (II)-KI-MG System. IOP Conference Series: Earth and Environmental Science, 2018, 111, 012022.	0.3	0
21	Efficient alkaline hydrogen evolution electrocatalysis enabled by an amorphous Co–Mo–B film. Dalton Transactions, 2018, 47, 7640-7643.	3.3	20
22	Topotactic Conversion of α-Fe ₂ O ₃ Nanowires into FeP as a Superior Fluorosensor for Nucleic Acid Detection: Insights from Experiment and Theory. Analytical Chemistry, 2017, 89, 2191-2195.	6.5	44
23	NiCoP Nanoarray: A Superior Pseudocapacitor Electrode with High Areal Capacitance. Chemistry - A European Journal, 2017, 23, 4435-4441.	3.3	134
24	Energy-efficient electrolytic hydrogen generation using a Cu ₃ P nanoarray as a bifunctional catalyst for hydrazine oxidation and water reduction. Inorganic Chemistry Frontiers, 2017, 4, 420-423.	6.0	101
25	In situ electrochemical surface derivation of cobalt phosphate from a Co(CO ₃) _{0.5} (OH)·0.11H ₂ O nanoarray for efficient water oxidation in neutral aqueous solution. Nanoscale, 2017, 9, 3752-3756.	5.6	82
26	NiS2 nanosheet array: A high-active bifunctional electrocatalyst for hydrazine oxidation and water reduction toward energy-efficient hydrogen production. Materials Today Energy, 2017, 3, 9-14.	4.7	63
27	Copperâ€Nitride Nanowires Array: An Efficient Dualâ€Functional Catalyst Electrode for Sensitive and Selective Nonâ€Enzymatic Glucose and Hydrogen Peroxide Sensing. Chemistry - A European Journal, 2017, 23, 4986-4989.	3.3	140
28	A nickel-borate nanoarray: a highly active 3D oxygen-evolving catalyst electrode operating in near-neutral water. Chemical Communications, 2017, 53, 3070-3073.	4.1	79
29	Fe ₃ N o ₂ N Nanowires Array: A Nonâ€Nobleâ€Metal Bifunctional Catalyst Electrode for Highâ€Performance Glucose Oxidation and H ₂ O ₂ Reduction toward Nonâ€Enzymatic Sensing Applications. Chemistry - A European Journal, 2017, 23, 5214-5218.	3.3	117
30	High-Efficiency and Durable Water Oxidation under Mild pH Conditions: An Iron Phosphate–Borate Nanosheet Array as a Non-Noble-Metal Catalyst Electrode. Inorganic Chemistry, 2017, 56, 3131-3135.	4.0	51
31	In situ formation of a 3D core/shell structured Ni ₃ N@Ni–Bi nanosheet array: an efficient non-noble-metal bifunctional electrocatalyst toward full water splitting under near-neutral conditions. Journal of Materials Chemistry A, 2017, 5, 7806-7810.	10.3	196
32	Bimetallic Nickelâ€Substituted Cobaltâ€Borate Nanowire Array: An Earthâ€Abundant Water Oxidation Electrocatalyst with Superior Activity and Durability at Near Neutral pH. Small, 2017, 13, 1700394.	10.0	95
33	Core–shell CoFe ₂ O ₄ @Co–Fe–Bi nanoarray: a surface-amorphization water oxidation catalyst operating at near-neutral pH. Nanoscale, 2017, 9, 7714-7718.	5.6	55
34	Hydrazine-assisted electrolytic hydrogen production: CoS ₂ nanoarray as a superior bifunctional electrocatalyst. New Journal of Chemistry, 2017, 41, 4754-4757.	2.8	70
35	Enhanced Electrocatalysis for Energyâ€Efficient Hydrogen Production over CoP Catalyst with Nonelectroactive Zn as a Promoter. Advanced Energy Materials, 2017, 7, 1700020.	19.5	519
36	Electrochemical Hydrazine Oxidation Catalyzed by Iron Phosphide Nanosheets Array toward Energyâ€Efficient Electrolytic Hydrogen Production from Water. ChemistrySelect, 2017, 2, 3401-3407.	1.5	28

#	Article	IF	CITATIONS
37	Integrating natural biomass electro-oxidation and hydrogen evolution: using a porous Fe-doped CoP nanosheet array as a bifunctional catalyst. Chemical Communications, 2017, 53, 5710-5713.	4.1	138
38	Water splitting in near-neutral media: using an Mn–Co-based nanowire array as a complementary electrocatalyst. Journal of Materials Chemistry A, 2017, 5, 12091-12095.	10.3	36
39	Threeâ€Dimensional Nickel–Borate Nanosheets Array for Efficient Oxygen Evolution at Nearâ€Neutral pH. Chemistry - A European Journal, 2017, 23, 6959-6963.	3.3	43
40	Core–Shellâ€Structured NiS ₂ @Niâ€B _i Nanoarray for Efficient Water Oxidation at Nearâ€Neutral pH. ChemCatChem, 2017, 9, 3138-3143.	3.7	32
41	A cobalt-borate nanosheet array: an efficient and durable non-noble-metal electrocatalyst for water oxidation at near neutral pH. Journal of Materials Chemistry A, 2017, 5, 7305-7308.	10.3	79
42	A nickel–borate–phosphate nanoarray for efficient and durable water oxidation under benign conditions. Inorganic Chemistry Frontiers, 2017, 4, 840-844.	6.0	46
43	N-Doped carbon dots: a metal-free co-catalyst on hematite nanorod arrays toward efficient photoelectrochemical water oxidation. Inorganic Chemistry Frontiers, 2017, 4, 537-540.	6.0	86
44	Energy‣aving Electrolytic Hydrogen Generation: Ni ₂ P Nanoarray as a Highâ€Performance Nonâ€Nobleâ€Metal Electrocatalyst. Angewandte Chemie - International Edition, 2017, 56, 842-846.	13.8	668
45	Energyâ€Saving Electrolytic Hydrogen Generation: Ni ₂ P Nanoarray as a Highâ€Performance Nonâ€Nobleâ€Metal Electrocatalyst. Angewandte Chemie, 2017, 129, 860-864.	2.0	140
46	Highâ€Performance Electrolytic Oxygen Evolution in Neutral Media Catalyzed by a Cobalt Phosphate Nanoarray. Angewandte Chemie, 2017, 129, 1084-1088.	2.0	65
47	Highâ€Performance Electrolytic Oxygen Evolution in Neutral Media Catalyzed by a Cobalt Phosphate Nanoarray. Angewandte Chemie - International Edition, 2017, 56, 1064-1068.	13.8	348
48	Replacing oxygen evolution with sodium sulfide electro-oxidation toward energy-efficient electrochemical hydrogen production: Using cobalt phosphide nanoarray as a bifunctional catalyst. International Journal of Hydrogen Energy, 2017, 42, 26289-26295.	7.1	15
49	Surface Amorphization: A Simple and Effective Strategy toward Boosting the Electrocatalytic Activity for Alkaline Water Oxidation. ACS Sustainable Chemistry and Engineering, 2017, 5, 8518-8522.	6.7	51
50	Co ₃ O ₄ Nanowire Arrays toward Superior Water Oxidation Electrocatalysis in Alkaline Media by Surface Amorphization. Chemistry - A European Journal, 2017, 23, 15601-15606.	3.3	29
51	Facilitating Active Species Generation by Amorphous NiFeâ€B _i Layer Formation on NiFeâ€LDH Nanoarray for Efficient Electrocatalytic Oxygen Evolution at Alkaline pH. Chemistry - A European Journal, 2017, 23, 11499-11503.	3.3	69
52	Remarkable enhancement of the alkaline oxygen evolution reaction activity of NiCo ₂ O ₄ by an amorphous borate shell. Inorganic Chemistry Frontiers, 2017, 4, 1546-1550.	6.0	34
53	An amorphous FeMoS ₄ nanorod array toward efficient hydrogen evolution electrocatalysis under neutral conditions. Chemical Communications, 2017, 53, 9000-9003.	4.1	124
54	Selfâ€Templating Construction of Hollow Amorphous CoMoS ₄ Nanotube Array towards Efficient Hydrogen Evolution Electrocatalysis at Neutral pH. Chemistry - A European Journal, 2017, 23, 12718-12723.	3.3	48

#	Article	IF	CITATIONS
55	In Situ Derived CoB Nanoarray: A Highâ€Efficiency and Durable 3D Bifunctional Electrocatalyst for Overall Alkaline Water Splitting. Small, 2017, 13, 1700805.	10.0	293
56	Mn Doping of CoP Nanosheets Array: An Efficient Electrocatalyst for Hydrogen Evolution Reaction with Enhanced Activity at All pH Values. ACS Catalysis, 2017, 7, 98-102.	11.2	461
57	Ternary NiCoP nanosheet array on a Ti mesh: a high-performance electrochemical sensor for glucose detection. Chemical Communications, 2016, 52, 14438-14441.	4.1	98
58	Self-supported spinel FeCo2O4nanowire array: an efficient non-noble-metal catalyst for the hydrolysis of NaBH4toward on-demand hydrogen generation. Nanotechnology, 2016, 27, 46LT03.	2.6	18