
Antoine Duval

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10039354/publications.pdf Version: 2024-02-01

ΔΝΤΟΙΝΕ ΟΠΛΛΙ

#	Article	IF	CITATIONS
1	A review on lignin-based polymeric, micro- and nano-structured materials. Reactive and Functional Polymers, 2014, 85, 78-96.	2.0	578
2	Solvent screening for the fractionation of industrial kraft lignin. Holzforschung, 2016, 70, 11-20.	0.9	161
3	Influence of the sampling area of the stem on the mechanical properties of hemp fibers. Materials Letters, 2011, 65, 797-800.	1.3	125
4	Network Design to Control Polyimine Vitrimer Properties: Physical Versus Chemical Approach. Macromolecules, 2020, 53, 3796-3805.	2.2	111
5	New Insights on the Chemical Modification of Lignin: Acetylation versus Silylation. ACS Sustainable Chemistry and Engineering, 2016, 4, 5212-5222.	3.2	103
6	Biobased vitrimers: Towards sustainable and adaptable performing polymer materials. Progress in Polymer Science, 2022, 127, 101515.	11.8	94
7	Cyclic Carbonates as Safe and Versatile Etherifying Reagents for the Functionalization of Lignins and Tannins. ACS Sustainable Chemistry and Engineering, 2017, 5, 7334-7343.	3.2	82
8	Biobased and Aromatic Reversible Thermoset Networks from Condensed Tannins via the Dielsâ^'Alder Reaction. ACS Sustainable Chemistry and Engineering, 2017, 5, 1199-1207.	3.2	76
9	Reversible crosslinking of lignin via the furan–maleimide Diels–Alder reaction. Green Chemistry, 2015, 17, 4991-5000.	4.6	71
10	Thermally healable and remendable lignin-based materials through Diels – Alder click polymerization. Polymer, 2017, 133, 78-88.	1.8	54
11	Comparison of Kraft lignin and lignosulfonates addition to wheat gluten-based materials: Mechanical and thermal properties. Industrial Crops and Products, 2013, 49, 66-74.	2.5	49
12	Characterization and Physicochemical Properties of Condensed Tannins from <i>Acacia catechu</i> . Journal of Agricultural and Food Chemistry, 2016, 64, 1751-1760.	2.4	48
13	Oxyalkylation of Condensed Tannin with Propylene Carbonate as an Alternative to Propylene Oxide. ACS Sustainable Chemistry and Engineering, 2016, 4, 3103-3112.	3.2	43
14	Ligninâ€Based Materials Through Thiol–Maleimide "Click―Polymerization. ChemSusChem, 2017, 10, 984-992.	3.6	39
15	Modification of Kraft Lignin to Expose Diazobenzene Groups: Toward pH- and Light-Responsive Biobased Polymers. Biomacromolecules, 2015, 16, 2979-2989.	2.6	35
16	Fractionation of lignosulfonates: comparison of ultrafiltration and ethanol solubility to obtain a set of fractions with distinct properties. Holzforschung, 2015, 69, 127-134.	0.9	29
17	Clicking Biobased Polyphenols: A Sustainable Platform for Aromatic Polymeric Materials. ChemSusChem, 2018, 11, 2472-2491.	3.6	23
18	Mild and controlled lignin methylation with trimethyl phosphate: towards a precise control of lignin functionality. Green Chemistry, 2020, 22, 1671-1680.	4.6	22

ANTOINE DUVAL

#	Article	IF	CITATIONS
19	Dynamic mechanical analysis of the multiple glass transitions of plasticized wheat gluten biopolymer. Journal of Applied Polymer Science, 2016, 133, .	1.3	20
20	Solvent―and Halogenâ€Free Modification of Biobased Polyphenols to Introduce Vinyl Groups: Versatile Aromatic Building Blocks for Polymer Synthesis. ChemSusChem, 2017, 10, 1813-1822.	3.6	20
21	Dihydrolevoglucosenone (Cyreneâ,,¢) as a versatile biobased solvent for lignin fractionation, processing, and chemistry. Green Chemistry, 2022, 24, 338-349.	4.6	18
22	Isolation of Low Dispersity Fractions of Acetone Organosolv Lignins to Understand their Reactivity: Towards Aromatic Building Blocks for Polymers Synthesis. ChemSusChem, 2021, 14, 387-397.	3.6	16
23	Scalable single-step synthesis of lignin-based liquid polyols with ethylene carbonate for polyurethane foams. Materials Today Chemistry, 2022, 24, 100793.	1.7	16
24	Preparation of plasticized wheat gluten/olive pomace powder biocomposite: Effect of powder content and chemical modifications. Materials and Design, 2015, 87, 742-749.	3.3	15
25	2,3-Butanediol as a Biobased Chain Extender for Thermoplastic Polyurethanes: Influence of Stereochemistry on Macromolecular Architectures and Properties. Macromolecules, 2022, 55, 5371-5381.	2.2	9
26	Synthesis of Bio-Based Photo-Cross-Linkable Polyesters Based on Caffeic Acid through Selective Lipase-Catalyzed Polymerization. Macromolecules, 0, , .	2.2	5