Xiaoxi Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10036583/publications.pdf

Version: 2024-02-01

623734 677142 23 601 14 22 h-index citations g-index papers 23 23 23 539 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Exogenous Chemical Exposure Increased Transcription Levels of the Host Virus Receptor Involving Coronavirus Infection. Environmental Science & Environ	10.0	2
2	3- <i>tert</i> -Butyl-4-hydroxyanisole Impairs Hepatic Lipid Metabolism in Male Mice Fed with a High-Fat Diet. Environmental Science & Environmental Sci	10.0	16
3	Assessment of Thyroid Endocrine Disruption Effects of Parabens Using In Vivo, In Vitro, and In Silico Approaches. Environmental Science & Environmenta	10.0	28
4	Disturbed Gut-Liver axis indicating oral exposure to polystyrene microplastic potentially increases the risk of insulin resistance. Environment International, 2022, 164, 107273.	10.0	58
5	Inflammation and accompanied disrupted hematopoiesis in adult mouse induced by rare earth element nanoparticles. Science of the Total Environment, 2022, 831, 155416.	8.0	4
6	Effect-directed analysis of estrogenic chemicals in sediments from an electronic-waste recycling area. Environmental Pollution, 2022, 306, 119369.	7.5	2
7	Environmental obesogen: More considerations about the potential cause of obesity epidemic. Ecotoxicology and Environmental Safety, 2022, 239, 113613.	6.0	0
8	Perfluorinated Iodine Alkanes Promoted Neural Differentiation of mESCs by Targeting miRNA-34a-5p in Notch-Hes Signaling. Environmental Science & Eamp; Technology, 2022, 56, 8496-8506.	10.0	9
9	Graphene Quantum Dots Disrupt Embryonic Stem Cell Differentiation by Interfering with the Methylation Level of <i>Sox</i> 2. Environmental Science & En	10.0	25
10	Toxicity of Tetrabromobisphenol A and Its Derivative in the Mouse Liver Following Oral Exposure at Environmentally Relevant Levels. Environmental Science & Environmentally Relevant Levels. Environmental Science & Environme	10.0	30
11	Resurgence of Sandstorms Complicates China's Air Pollution Situation. Environmental Science & China⧠Air Pollution Situation & China⧠Air Pollution Situation & China⧠Air Pollution Situation & China⧠Air Pollution & China⧠Air Polluti	10.0	17
12	Inherited and acquired corona of coronavirus in the host: Inspiration from the biomolecular corona of nanoparticles. Nano Today, 2021, 39, 101161.	11.9	11
13	Developmental Toxicity of Few-Layered Black Phosphorus toward Zebrafish. Environmental Science & Envir	10.0	18
14	Cellular Uptake of Few-Layered Black Phosphorus and the Toxicity to an Aquatic Unicellular Organism. Environmental Science & Eamp; Technology, 2020, 54, 1583-1592.	10.0	25
15	Perturbation of Normal Algal Growth by Black Phosphorus Nanosheets: The Role of Degradation. Environmental Science and Technology Letters, 2020, 7, 35-41.	8.7	19
16	Perturbation of 3-tert-butyl-4-hydroxyanisole in adipogenesis of male mice with normal and high fat diets. Science of the Total Environment, 2020, 703, 135608.	8.0	26
17	Butylated hydroxyanisole isomers induce distinct adipogenesis in 3T3-L1 cells. Journal of Hazardous Materials, 2019, 379, 120794.	12.4	38
18	Assessment of the carcinogenic effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin using mouse embryonic stem cells to form teratoma in vivo. Toxicology Letters, 2019, 312, 139-147.	0.8	7

XIAOXI YANG

#	ARTICLE	IF	CITATION
19	Polyfluorinated iodine alkanes regulated distinct breast cancer cell progression through binding with estrogen receptor alpha or beta isoforms. Environmental Pollution, 2018, 239, 300-307.	7.5	8
20	Synthetic Phenolic Antioxidants Cause Perturbation in Steroidogenesis in Vitro and in Vivo. Environmental Science & Environmen	10.0	83
21	Developmental toxicity of synthetic phenolic antioxidants to the early life stage of zebrafish. Science of the Total Environment, 2018, 643, 559-568.	8.0	115
22	A novel high throughput screening assay for binding affinities of perfluoroalkyl iodide for estrogen receptor alpha and beta isoforms. Talanta, 2017, 175, 413-420.	5.5	14
23	Brainâ€ŧargeted distribution and high retention of silver by chronic intranasal instillation of silver nanoparticles and ions in Sprague–Dawley rats. Journal of Applied Toxicology, 2016, 36, 445-453.	2.8	46