Makoto Fukudome

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10036525/publications.pdf

Version: 2024-02-01

840776 839539 29 348 11 18 citations h-index g-index papers 35 35 35 287 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Threeâ€inâ€One: Miniature Models of Natural Acylâ€Transfer Systems Enable Vectorâ€Selective Reaction on the Primary Side of Cyclodextrins. Chemistry - A European Journal, 2022, 28, .	3.3	1
2	A one-pot synthetic method for the hetero-bifunctionalization of α-cyclodextrin at the secondary hydroxyl side with high clockwise–counterclockwise selectivity. Organic and Biomolecular Chemistry, 2017, 15, 4077-4080.	2.8	2
3	Synthesis and binding behaviors of monomethyl cucurbit[6]uril. Tetrahedron Letters, 2011, 52, 4646-4649.	1.4	15
4	Imidazolyl Cyclodextrins: Artificial Serine Proteases Enabling Regiospecific Reactions. Angewandte Chemie - International Edition, 2007, 46, 5024-5027.	13.8	29
5	The first topologically controlled synthesis of doubly bridged \hat{l}^2 -cyclodextrin dimers. Chemical Communications, 2007, , 828-830.	4.1	8
6	Selective modification of \hat{l}^2 -cyclodextrin: an unexpected tandem reaction enables the cross-linking of C2A and C2BÂvia a sulfur atom. Chemical Communications, 2007, , 3157.	4.1	5
7	A Vector-Selective Reaction Enables Efficient Construction of Specific Topology upon the Primary Side of Î ² -Cyclodextrin. Organic Letters, 2007, 9, 4591-4594.	4.6	14
8	Hetero-bifunctional \hat{l}^3 -cyclodextrins having dansylcysteine and tosyl groups at two adjacent sugar units: synthesis and determination of regio-chemistry. Tetrahedron Letters, 2007, 48, 3267-3271.	1.4	16
9	Heptakis(6-deoxy-6-guanidino)-β-cyclodextrin: an artificial model for mitochondrial ADP/ATP carrier. Tetrahedron Letters, 2007, 48, 3479-3483.	1.4	24
10	Selective functionalization of \hat{l}^2 -cyclodextrin: efficient conversions of 2,3-alloepoxypyranosides to 2,3-mannoepithiopyranosides. Tetrahedron Letters, 2007, 48, 6665-6668.	1.4	7
11	Selective synthesis and ester cleavage property of 3A,2B-anhydro-3B-deoxy-3B-thio-β-cyclodextrin. Tetrahedron Letters, 2007, 48, 7493-7497.	1.4	11
12	Coumarin-conjugated cyclodextrins: remarkable enhancement of the chemical-to-light energy transfer efficiency. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2007, 57, 125-129.	1.6	1
13	Clockwise–counterclockwise differentiation on the upper rim of a monofunctional γ-cyclodextrin: efficient topological control in the syntheses of capped cyclodextrins. Chemical Communications, 2006, , 5057-5059.	4.1	14
14	Shortcut Synthesis of β-Cyclomannin from β-Cyclodextrin. Organic Letters, 2006, 8, 5733-5736.	4.6	3
15	Hetero-bifunctionalization of the secondary face of \hat{l}^2 -cyclodextrin: selective 3G-sulfonylation and subsequent 2G,3G-epoxidation of 3A-azido-3A-deoxy-altro- \hat{l}^2 -cyclodextrin. Tetrahedron Letters, 2006, 47, 6599-6602.	1.4	5
16	A facile sulfonylation method enabling direct syntheses of per(2-O-sulfonyl)-Î ² -cyclodextrins. Tetrahedron Letters, 2006, 47, 8837-8840.	1.4	16
17	Preparation of 2A,3A-alloepimino-2A,3A-dideoxy- \hat{l}^2 -cyclodextrin as a versatile scaffold candidate for the hetero-2A,3A-bifunctionalization. Tetrahedron Letters, 2005, 46, 1115-1118.	1.4	7
18	Synthesis of a Cycloallin Derivative from \hat{l}^2 -Cyclodextrin: Heptakis(2,3-dideoxy-2,3-epithio)- \hat{l}^2 -cycloallin. Angewandte Chemie - International Edition, 2005, 44, 4201-4204.	13.8	7

#	Article	IF	CITATIONS
19	The first hetero-bifunctionalization of the secondary face of \hat{l}^2 -cyclodextrin: selective and efficient conversion of the A-ring of a 2A,2B-disulfonate to 2A,3A-epoxymannoside. Chemical Communications, 2005, , 3168.	4.1	7
20	Construction of a Fused Polycyclic Wall within the Cyclodextrin Belt To Ensure a Distorted Cavity: An Unusualtrans-Diequatorial Ring-Opening Reaction of Cyclodextrin Epoxide Rings. European Journal of Organic Chemistry, 2004, 2004, 3113-3118.	2.4	4
21	Selective modification of mono-altro- \hat{l}^2 -cyclodextrin: dependence of O-sulfonylation position on the shape of sulfonylating reactant. Tetrahedron Letters, 2004, 45, 3383-3386.	1.4	5
22	Selective mono-O-sulfonylation of A,B-di-altro- β-cyclodextrin by utilizing restricted orientation of a guest-type sulfonylating reactant in the elliptically distorted cavity: the 2A-O- and 3G-O-2-naphthalenesulfonates as a versatile scaffold to prepare artificial enzymes with controlling substrate orientation. Tetrahedron Letters, 2004, 45, 6899-6902.	1.4	2
23	2A,3A-Alloepithio-2A,3A-dideoxy- \hat{I}^2 -cyclodextrin: synthesis and application in the construction of rigid elliptical cavities with functionality at the secondary hydroxyl side. Tetrahedron Letters, 2004, 45, 9045-9048.	1.4	6
24	Functionalization of Cyclodextrins via Reactions of 2,3-Anhydrocyclodextrins. Journal of Organic Chemistry, 2003, 68, 9456-9466.	3.2	58
25	Flexible Cyclooligosaccharides: Guest-Binding and Regio-selective Modification. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2002, 44, 323-328.	1.6	3
26	Selective sulfonylation of one of the 21 different hydroxyl groups of mono-altro- \hat{l}^2 -cyclodextrin. Tetrahedron Letters, 2001, 42, 293-295.	1.4	10
27	Two stereoisomeric 31,211-anhydro-α-cyclodextrins: a molecular dynamics and crystallographic study. Carbohydrate Research, 2001, 336, 297-308.	2.3	10
28	Restriction of guest rotation based on the distortion of a cyclodextrin cavity. Chemical Communications, 2000, , 541-542.	4.1	31
29	Cyclodextrin-accelerated cleavage of phenyl esters: is it the 2-hydroxy or the 3-hydroxy that promotes the acyl transfer?. Chemical Communications, 1999, , 1045-1046.	4.1	12