Sang Soo Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1003637/publications.pdf

Version: 2024-02-01

		36271	42364
93	13,490	51	92
papers	citations	h-index	g-index
93	93	93	11568
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, 2014, 99, 19-33.	4.2	3,175
2	Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environment International, 2019, 125, 365-385.	4.8	1,135
3	Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresource Technology, 2012, 118, 536-544.	4.8	988
4	Biochar application to low fertility soils: A review of current status, and future prospects. Geoderma, 2019, 337, 536-554.	2.3	571
5	Solid waste management: Scope and the challenge of sustainability. Journal of Cleaner Production, 2019, 228, 658-678.	4.6	369
6	Trichloroethylene adsorption by pine needle biochars produced at various pyrolysis temperatures. Bioresource Technology, 2013, 143, 615-622.	4.8	319
7	Enhanced sulfamethazine removal by steam-activated invasive plant-derived biochar. Journal of Hazardous Materials, 2015, 290, 43-50.	6.5	299
8	Benefits and limitations of biochar amendment in agricultural soils: A review. Journal of Environmental Management, 2018, 227, 146-154.	3.8	292
9	Effects of soil dilution and amendments (mussel shell, cow bone, and biochar) on Pb availability and phytotoxicity in military shooting range soil. Ecotoxicology and Environmental Safety, 2012, 79, 225-231.	2.9	276
10	Review of nanomaterials as sorbents in solid-phase extraction for environmental samples. TrAC - Trends in Analytical Chemistry, 2018, 108, 347-369.	5.8	240
11	Speciation and phytoavailability of lead and antimony in a small arms range soil amended with mussel shell, cow bone and biochar: EXAFS spectroscopy and chemical extractions. Chemosphere, 2014, 95, 433-441.	4.2	230
12	Biochar-induced changes in soil properties affected immobilization/mobilization of metals/metalloids in contaminated soils. Journal of Soils and Sediments, 2017, 17, 717-730.	1.5	211
13	Influence of soil properties and feedstocks on biochar potential for carbon mineralization and improvement of infertile soils. Geoderma, 2018, 332, 100-108.	2.3	206
14	Pyrolysis process of agricultural waste using CO2 for waste management, energy recovery, and biochar fabrication. Applied Energy, 2017, 185, 214-222.	5.1	198
15	Effects of rapeseed residue on lead and cadmium availability and uptake by rice plants in heavy metal contaminated paddy soil. Chemosphere, 2011, 85, 677-682.	4.2	191
16	Impacts of biochar application on upland agriculture: A review. Journal of Environmental Management, 2019, 234, 52-64.	3.8	184
17	Effects of natural and calcined oyster shells on Cd and Pb immobilization in contaminated soils. Environmental Earth Sciences, 2010, 61, 1301-1308.	1.3	178
18	Lead and copper immobilization in a shooting range soil using soybean stover- and pine needle-derived biochars: Chemical, microbial and spectroscopic assessments. Journal of Hazardous Materials, 2016, 301, 179-186.	6.5	178

#	Article	IF	CITATIONS
19	Eggshell and coral wastes as low cost sorbents for the removal of Pb2+, Cd2+ and Cu2+ from aqueous solutions. Journal of Industrial and Engineering Chemistry, 2012, 18, 198-204.	2.9	167
20	Veterinary antibiotics contamination in water, sediment, and soil near a swine manure composting facility. Environmental Earth Sciences, 2014, 71, 1433-1440.	1.3	159
21	Immobilization of lead in a Korean military shooting range soil using eggshell waste: An integrated mechanistic approach. Journal of Hazardous Materials, 2012, 209-210, 392-401.	6.5	149
22	Distribution and Accumulative Pattern of Tetracyclines and Sulfonamides in Edible Vegetables of Cucumber, Tomato, and Lettuce. Journal of Agricultural and Food Chemistry, 2015, 63, 398-405.	2.4	149
23	Impact of soybean stover- and pine needle-derived biochars on Pb and As mobility, microbial community, and carbon stability in a contaminated agricultural soil. Journal of Environmental Management, 2016, 166, 131-139.	3.8	144
24	Natural zeolite and its application in concrete composite production. Composites Part B: Engineering, 2019, 165, 354-364.	5.9	137
25	Immobilization of lead in contaminated firing range soil using biochar. Environmental Science and Pollution Research, 2013, 20, 8464-8471.	2.7	122
26	Application of eggshell waste for the immobilization of cadmium and lead in a contaminated soil. Environmental Geochemistry and Health, 2011, 33, 31-39.	1.8	119
27	Invasive plant-derived biochar inhibits sulfamethazine uptake by lettuce in soil. Chemosphere, 2014, 111, 500-504.	4.2	116
28	Molecular mechanisms in phytoremediation of environmental contaminants and prospects of engineered transgenic plants/microbes. Science of the Total Environment, 2020, 705, 135858.	3.9	112
29	Acid-activated biochar increased sulfamethazine retention in soils. Environmental Science and Pollution Research, 2015, 22, 2175-2186.	2.7	107
30	Biofiltration of hydrogen sulfide: Trends and challenges. Journal of Cleaner Production, 2018, 187, 131-147.	4.6	105
31	Status, characterization, and potential utilization of municipal solid waste as renewable energy source: Lahore case study in Pakistan. Environment International, 2020, 134, 105291.	4.8	100
32	Soil pollution assessment and identification of hyperaccumulating plants in chromated copper arsenate (CCA) contaminated sites, Korea. Chemosphere, 2012, 87, 872-878.	4.2	98
33	The role of biochar, natural iron oxides, and nanomaterials as soil amendments for immobilizing metals in shooting range soil. Environmental Geochemistry and Health, 2015, 37, 931-942.	1.8	97
34	Heavy metal immobilization in soil near abandoned mines using eggshell waste and rapeseed residue. Environmental Science and Pollution Research, 2013, 20, 1719-1726.	2.7	94
35	Modeling adsorption kinetics of trichloroethylene onto biochars derived from soybean stover and peanut shell wastes. Environmental Science and Pollution Research, 2013, 20, 8364-8373.	2.7	92
36	Spatial distribution of heavy metals in crops in a wastewater irrigated zone and health risk assessment. Environmental Research, 2019, 168, 382-388.	3.7	90

#	Article	IF	CITATIONS
37	Production and use of biochar from buffaloâ€weed (<i>Ambrosia trifida</i> L.) for trichloroethylene removal from water. Journal of Chemical Technology and Biotechnology, 2014, 89, 150-157.	1.6	89
38	Biochar influences soil carbon pools and facilitates interactions with soil: A field investigation. Land Degradation and Development, 2018, 29, 2162-2171.	1.8	89
39	Effects of biochar, cow bone, and eggshell on Pb availability to maize in contaminated soil irrigated with saline water. Environmental Earth Sciences, 2014, 71, 1289-1296.	1.3	88
40	Synergy effects of biochar and polyacrylamide on plants growth and soil erosion control. Environmental Earth Sciences, 2015, 74, 2463-2473.	1.3	82
41	Monitoring of selected veterinary antibiotics in environmental compartments near a composting facility in Gangwon Province, Korea. Environmental Monitoring and Assessment, 2011, 174, 693-701.	1.3	80
42	Effects of Limeâ€Based Waste Materials on Immobilization and Phytoavailability of Cadmium and Lead in Contaminated Soil. Clean - Soil, Air, Water, 2013, 41, 1235-1241.	0.7	73
43	Carbon and nitrogen mineralization and enzyme activities in soil aggregate-size classes: Effects of biochar, oyster shells, and polymers. Chemosphere, 2018, 198, 40-48.	4.2	73
44	A comparison of figure of merit (FOM) for various materials in adsorptive removal of benzene under ambient temperature and pressure. Environmental Research, 2019, 168, 96-108.	3.7	73
45	Biochars as Potential Adsorbers of CH4, CO2 and H2S. Sustainability, 2017, 9, 121.	1.6	68
46	Effect of Corn Residue Biochar on the Hydraulic Properties of Sandy Loam Soil. Sustainability, 2017, 9, 266.	1.6	65
47	Ammonium removal using a calcined natural zeolite modified with sodium nitrate. Journal of Hazardous Materials, 2020, 393, 122481.	6.5	65
48	Core-shell structured molecularly imprinted materials for sensing applications. TrAC - Trends in Analytical Chemistry, 2020, 133, 116043.	5.8	60
49	In-situ biochar application conserves nutrients while simultaneously mitigating runoff and erosion of an Fe-oxide-enriched tropical soil. Science of the Total Environment, 2018, 619-620, 665-671.	3.9	58
50	An assessment of the utilization of waste resources for the immobilization of Pb and Cu in the soil from a Korean military shooting range. Environmental Earth Sciences, 2012, 67, 1023-1031.	1.3	57
51	Changes of biochemical properties and heavy metal bioavailability in soil treated with natural liming materials. Environmental Earth Sciences, 2013, 70, 3411-3420.	1.3	55
52	Effects of carbon nanotube and biochar on bioavailability of Pb, Cu and Sb in multi-metal contaminated soil. Environmental Geochemistry and Health, 2017, 39, 1409-1420.	1.8	53
53	Steam activation of biochars facilitates kinetics and pH-resilience of sulfamethazine sorption. Journal of Soils and Sediments, 2016, 16, 889-895.	1.5	51
54	Slow pyrolyzed biochars from crop residues for soil metal(loid) immobilization and microbial community abundance in contaminated agricultural soils. Chemosphere, 2017, 177, 157-166.	4.2	50

#	Article	IF	Citations
55	Effects of natural and calcined poultry waste on Cd, Pb and As mobility in contaminated soil. Environmental Earth Sciences, 2013, 69, 11-20.	1.3	45
56	Carbon dioxide-cofeeding pyrolysis of pine sawdust over nickle-based catalyst for hydrogen production. Energy Conversion and Management, 2019, 201, 112140.	4.4	44
57	Inhibitory Effect of Veterinary Antibiotics on Denitrification in Groundwater: A Microcosm Approach. Scientific World Journal, The, 2014, 2014, 1-7.	0.8	42
58	Effects of Synthetic Chelators and Low-Molecular-Weight Organic Acids on Chromium, Copper, and Arsenic Uptake and Translocation in Maize (Zea mays L.). Soil Science, 2012, 177, 655-663.	0.9	41
59	Using CO ₂ as an Oxidant in the Catalytic Pyrolysis of Peat Moss from the North Polar Region. Environmental Science & Environmental Science	4.6	40
60	Starch-Mg/Al layered double hydroxide composites as an efficient solid phase extraction sorbent for non-steroidal anti-inflammatory drugs as environmental pollutants. Journal of Hazardous Materials, 2021, 401, 123782.	6.5	38
61	Sorption of Polycyclic Aromatic Hydrocarbons (PAHs) to Lignin: Effects of Hydrophobicity and Temperature. Bulletin of Environmental Contamination and Toxicology, 2014, 93, 84-88.	1.3	37
62	Decontamination of petroleum-contaminated soil via pyrolysis under carbon dioxide atmosphere. Journal of Cleaner Production, 2019, 236, 117724.	4.6	37
63	Assessment of Soil Health in Urban Agriculture: Soil Enzymes and Microbial Properties. Sustainability, 2017, 9, 310.	1.6	34
64	Bioremediation strategies with biochar for polychlorinated biphenyls (PCBs)-contaminated soils: A review. Environmental Research, 2021, 200, 111757.	3.7	31
65	Natural and synthesised iron-rich amendments for As and Pb immobilisation in agricultural soil. Chemistry and Ecology, 2014, 30, 267-279.	0.6	30
66	The Effects of Biochar Amendment on Soil Fertility. SSSA Special Publication Series, 0, , 123-144.	0.2	30
67	CO2 to fuel via pyrolysis of banana peel. Chemical Engineering Journal, 2020, 392, 123774.	6.6	29
68	Biochar application strategies for polycyclic aromatic hydrocarbons removal from soils. Environmental Research, 2022, 213, 113599.	3.7	28
69	Using Highâ€Resolution Computed Tomography Analysis To Characterize Soilâ€6urface Seals. Soil Science Society of America Journal, 2008, 72, 1478-1485.	1.2	26
70	Potential toxicity of trace elements and nanomaterials to Chinese cabbage in arsenic- and lead-contaminated soil amended with biochars. Environmental Geochemistry and Health, 2019, 41, 1777-1791.	1.8	24
71	Size fractionated phytomonitoring of airborne particulate matter (PM) and speciation of PM bound toxic metals pollution through Calotropis procera in an urban environment. Ecological Indicators, 2019, 104, 32-40.	2.6	23
72	Sulphamethazine in poultry manure changes carbon and nitrogen mineralisation in soils. Chemistry and Ecology, 2016, 32, 899-918.	0.6	21

#	Article	IF	Citations
73	Enhancement of soil physical properties and soil water retention with biochar-based soil amendments. Science of the Total Environment, 2022, 836, 155746.	3.9	21
74	Enhanced accessibility of carbon in pyrolysis of brown coal using carbon dioxide. Journal of CO2 Utilization, 2018, 27, 433-440.	3.3	20
75	Enhancement of syngas for H2 production via catalytic pyrolysis of orange peel using CO2 and bauxite residue. Applied Energy, 2019, 254, 113803.	5.1	20
76	Construction of biotreatment platforms for aromatic hydrocarbons and their future perspectives. Journal of Hazardous Materials, 2021, 416, 125968.	6.5	20
77	Efficiency of Poultry Manure Biochar for Stabilization of Metals in Contaminated Soil. Journal of Applied Biological Chemistry, 2015, 58, 39-50.	0.2	20
78	Progress, prospects, and challenges in standardization of sampling and analysis of micro- and nano-plastics in the environment. Journal of Cleaner Production, 2021, 325, 129321.	4.6	20
79	Peat moss-derived biochars as effective sorbents for VOCs' removal in groundwater. Environmental Geochemistry and Health, 2019, 41, 1637-1646.	1.8	19
80	Leveraging carbon dioxide to control the H2/CO ratio in catalytic pyrolysis of fishing net waste. Renewable and Sustainable Energy Reviews, 2021, 138, 110559.	8.2	18
81	Commercial versus synthesized polymers for soil erosion control and growth of Chinese cabbage. SpringerPlus, 2013, 2, 534.	1.2	17
82	Modeling the impacts of temperature and precipitation changes on soil CO2 fluxes from a Switchgrass stand recently converted from cropland. Journal of Environmental Sciences, 2016, 43, 15-25.	3.2	17
83	Effects of biochar and polyacrylamide on decomposition of soil organic matter and 14C-labeled alfalfa residues. Journal of Soils and Sediments, 2017, 17, 611-620.	1.5	14
84	Effect of Rapeseed Green Manure Amendment on Soil Properties and Rice Productivity. Communications in Soil Science and Plant Analysis, 2014, 45, 751-764.	0.6	13
85	Determining soil quality in urban agricultural regions by soil enzyme-based index. Environmental Geochemistry and Health, 2017, 39, 1531-1544.	1.8	8
86	Analytical Method for Measurement of Tobacco-Specific Nitrosamines in E-Cigarette Liquid and Aerosol. Applied Sciences (Switzerland), 2018, 8, 2699.	1.3	8
87	Monitoring of Selected Veterinary Antibiotics in Animal Carcass Disposal Site and Adjacent Agricultural Soil. Journal of Applied Biological Chemistry, 2014, 57, 189-196.	0.2	7
88	Heavy Metal Stabilization in Soils using Waste Resources - A Critical Review. Journal of Applied Biological Chemistry, 2015, 58, 157-174.	0.2	6
89	Sorption of polycyclic aromatic hydrocarbons (PAHs) by dietary fiber extracted from wheat bran. Chemical Speciation and Bioavailability, 2016, 28, 13-17.	2.0	5
90	Effect of exclosure on subsurface water level and sediment yield in the tropical highlands of Ethiopia. Journal of Environmental Management, 2022, 317, 115414.	3.8	4

#	Article	IF	CITATIONS
91	Rainfall Erosivity Factor of Korean Soils Estimated by Using USLE under Climate Change. Han'guk T'oyang Piryo Hakhoe Chi Han'guk T'oyang Piryo Hakhoe, 2021, 54, 265-275.	0.1	3
92	Carbonaceous resin capsule for vapor-phase monitoring of volatile hydrocarbons in soil: partitioning and kinetic model verification. Environmental Geochemistry and Health, 2013, 35, 715-725.	1.8	2
93	Efficacy of rapeseed residue and eggshell waste on enzyme activity and soil quality in rice paddy. Chemistry and Ecology, 2013, 29, 501-510.	0.6	2