Donald Bergstrom

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10034773/publications.pdf

Version: 2024-02-01

394421 434195 35 949 19 31 citations g-index h-index papers 35 35 35 562 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Local flow field of a surface-mounted finite circular cylinder. Journal of Fluids and Structures, 2012, 34, 105-122.	3.4	87
2	Turbulent wake of a finite circular cylinder of small aspect ratio. Journal of Fluids and Structures, 2006, 22, 919-928.	3.4	83
3	Recent advances in modeling the underfill process in flip-chip packaging. Microelectronics Journal, 2007, 38, 67-75.	2.0	69
4	An analytical model for predicting the underfill flow characteristics in flip-chip encapsulation. IEEE Transactions on Advanced Packaging, 2005, 28, 481-487.	1.6	64
5	Influence of aspect ratio on the mean flow field of a surface-mounted finite-height square prism. International Journal of Heat and Fluid Flow, 2017, 65, 1-20.	2.4	58
6	A study on the effects of wind on the air intake flow rate of a cooling tower: Part 2. Wind wall study. Journal of Wind Engineering and Industrial Aerodynamics, 1996, 64, 61-72.	3.9	46
7	Calculation of wall-mass transfer rates in separated aqueous flow using a low Reynolds number κ-ε model. International Journal of Heat and Mass Transfer, 1992, 35, 1977-1985.	4.8	37
8	A study on the effects of wind on the air intake flow rate of a cooling tower: Part 1. Wind tunnel study. Journal of Wind Engineering and Industrial Aerodynamics, 1996, 64, 47-59.	3.9	37
9	The effect of a wake-mounted splitter plate on the flow around a surface-mounted finite-height circular cylinder. Journal of Fluids and Structures, 2013, 37, 185-200.	3.4	37
10	Numerical Modeling for the Underfill Flow in Flip-Chip Packaging. IEEE Transactions on Components and Packaging Technologies, 2009, 32, 227-234.	1.3	34
11	Predictive models for erosion-corrosion under disturbed flow conditions. Corrosion Science, 1993, 35, 627-633.	6.6	33
12	Experimental verification of models for underfill flow driven by capillary forces in flip-chip packaging. Microelectronics Reliability, 2008, 48, 425-430.	1.7	33
13	A study on the effects of wind on the air intake flow rate of a cooling tower: Part 3. Numerical study. Journal of Wind Engineering and Industrial Aerodynamics, 1996, 64, 73-88.	3.9	32
14	Influence of transient flow and solder bump resistance on underfill process. Microelectronics Journal, 2005, 36, 687-693.	2.0	32
15	Modelling and simulation of the chondrocyte cell growth, glucose consumption and lactate production within a porous tissue scaffold inside a perfusion bioreactor. Biotechnology Reports (Amsterdam, Netherlands), 2015, 5, 55-62.	4.4	32
16	Effect of velocity ratio on the streamwise vortex structures in the wake of a stack. Journal of Fluids and Structures, 2010, 26, 1-18.	3.4	31
17	Modeling the flow and mass transport in a mechanically stimulated parametric porous scaffold under fluid-structure interaction approach. International Communications in Heat and Mass Transfer, 2018, 96, 53-60.	5 . 6	23
18	Modeling of the Flow within Scaffolds in Perfusion Bioreactors. American Journal of Biomedical Engineering, 2012, 1, 72-77.	0.9	21

#	Article	IF	CITATIONS
19	A mathematical model and computational framework for threeâ€dimensional chondrocyte cell growth in a porous tissue scaffold placed inside a biâ€directional flow perfusion bioreactor. Biotechnology and Bioengineering, 2015, 112, 2601-2610.	3.3	19
20	Numerical study of wind flow over a cooling tower. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 46-47, 657-664.	3.9	18
21	Incomplete similarity of a plane turbulent wall jet on smooth and transitionally rough surfaces. Journal of Turbulence, 2015, 16, 1076-1090.	1.4	17
22	Effect of a wall on the wake dynamics of an infinite square cylinder. International Journal of Heat and Fluid Flow, 2015, 55, 158-166.	2.4	17
23	Influence of aspect ratio on the flow above the free end of a surface-mounted finite cylinder. International Journal of Heat and Fluid Flow, 2015, 56, 290-304.	2.4	15
24	A plane turbulent wall jet on a fully rough surface. International Journal of Heat and Fluid Flow, 2017, 66, 258-264.	2.4	15
25	Prediction of mono-disperse gas–liquid turbulent flow in a vertical pipe. International Journal of Multiphase Flow, 2016, 85, 236-244.	3.4	10
26	CFD-Based Comparison Study of a New Flow Diverting Stent and Commercially-Available Ones for the Treatment of Cerebral Aneurysms. Applied Sciences (Switzerland), 2019, 9, 1341.	2.5	10
27	Turbulent wake and vortex shedding for a stack partially immersed in a turbulent boundary layer. Journal of Fluids and Structures, 2007, 23, 1189-1206.	3.4	9
28	Instantaneous flow field above the free end of finite-height cylinders and prisms. International Journal of Heat and Fluid Flow, 2013, 43, 120-128.	2.4	9
29	Visualisation and analysis of large-scale vortex structures in three-dimensional turbulent lid-driven cavity flow. Journal of Turbulence, 2015, 16, 901-924.	1.4	9
30	Wind flow over an elevated roadway. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 44, 2697-2698.	3.9	7
31	Numerical study of wind flow over an elevated roadway. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 46-47, 135-143.	3.9	2
32	Modelling bubble induced turbulence for gas-liquid bubbly flow in a vertical pipe. Chemical Engineering Science, 2019, 197, 159-171.	3.8	2
33	Discretization and perturbations in the simulation of localized turbulence in a pipe with a sudden expansion. Journal of Fluid Mechanics, 2022, 935, .	3.4	1
34	Numerical study of wind flow over a cooling tower. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 46-47, 747.	3.9	0
35	Numerical study of wind flow over an elevated roadway. , 1993, , 135-143.		0