
Zrinka Tarle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1003409/publications.pdf Version: 2024-02-01

701NKA TADIE

#	Article	IF	CITATIONS
1	Aging-Dependent Changes in Mechanical Properties of the New Generation of Bulk-Fill Composites. Materials, 2022, 15, 902.	2.9	19
2	lon release and hydroxyapatite precipitation of resin composites functionalized with two types of bioactive glass. Journal of Dentistry, 2022, 118, 103950.	4.1	17
3	Effect of adhesive coating on calcium, phosphate, and fluoride release from experimental and commercial remineralizing dental restorative materials. Scientific Reports, 2022, 12, .	3.3	7
4	Long-Term Assessment of Contemporary Ion-Releasing Restorative Dental Materials. Materials, 2022, 15, 4042.	2.9	8
5	Rapid 3 s Curing: What Happens in Deep Layers of New Bulk-Fill Composites?. Materials, 2021, 14, 515.	2.9	15
6	Incorporation of Copper-Doped Mesoporous Bioactive Glass Nanospheres in Experimental Dental Composites: Chemical and Mechanical Characterization. Materials, 2021, 14, 2611.	2.9	17
7	Anti-demineralizing protective effects on enamel identified in experimental and commercial restorative materials with functional fillers. Scientific Reports, 2021, 11, 11806.	3.3	13
8	Rapid high-intensity light-curing of bulk-fill composites: A quantitative analysis of marginal integrity. Journal of Dentistry, 2021, 111, 103708.	4.1	12
9	Polymerization kinetics of experimental resin composites functionalized with conventional (45S5) and a customized low-sodium fluoride-containing bioactive glass. Scientific Reports, 2021, 11, 21225.	3.3	8
10	Experimental Bioactive Glass-Containing Composites and Commercial Restorative Materials: Anti-Demineralizing Protection of Dentin. Biomedicines, 2021, 9, 1616.	3.2	13
11	Effect of Conventional Adhesive Application or Co-Curing Technique on Dentin Bond Strength. Materials, 2021, 14, 7664.	2.9	5
12	Effect of rapid high-intensity light-curing on polymerization shrinkage properties of conventional and bulk-fill composites. Journal of Dentistry, 2020, 101, 103448.	4.1	27
13	Polymerization shrinkage behaviour of resin composites functionalized with unsilanized bioactive glass fillers. Scientific Reports, 2020, 10, 15237.	3.3	17
14	The effect of rapid high-intensity light-curing on micromechanical properties of bulk-fill and conventional resin composites. Scientific Reports, 2020, 10, 10560.	3.3	28
15	A New Customized Bioactive Glass Filler to Functionalize Resin Composites: Acid-Neutralizing Capability, Degree of Conversion, and Apatite Precipitation. Journal of Clinical Medicine, 2020, 9, 1173.	2.4	25
16	Curing potential of experimental resin composites filled with bioactive glass: A comparison between Bis-EMA and UDMA based resin systems. Dental Materials, 2020, 36, 711-723.	3.5	35
17	Fluoride-Releasing Restorative Materials: The Effect of a Resinous Coat on Ion Release. Acta Stomatologica Croatica, 2020, 54, 371-381.	1.0	13
18	The effects of extended curing time and radiant energy on microhardness and temperature rise of conventional and bulk-fill resin composites. Clinical Oral Investigations, 2019, 23, 3777-3788.	3.0	26

#	Article	IF	CITATIONS
19	The effect of excitation laser power in Raman spectroscopic measurements of the degree of conversion of resin composites. Dental Materials, 2019, 35, 1227-1237.	3.5	5
20	Wavelength-dependent light transmittance in resin composites: practical implications for curing units with different emission spectra. Clinical Oral Investigations, 2019, 23, 4399-4409.	3.0	11
21	Long-term water sorption and solubility of experimental bioactive composites based on amorphous calcium phosphate and bioactive glass. Dental Materials Journal, 2019, 38, 555-564.	1.8	25
22	Degree of conversion of experimental resin composites containing bioactive glass 45S5: the effect of post-cure heating. Scientific Reports, 2019, 9, 17245.	3.3	47
23	Antibiotic prescription in emergency dental service in Zagreb, Croatia – a retrospective cohort study. International Dental Journal, 2019, 69, 273-280.	2.6	12
24	Mechanical properties of experimental composites containing bioactive glass after artificial aging in water and ethanol. Clinical Oral Investigations, 2019, 23, 2733-2741.	3.0	36
25	Clinical and patient reported outcomes of bleaching effectiveness. Acta Odontologica Scandinavica, 2018, 76, 30-38.	1.6	26
26	Degree of Conversion. , 2018, , 63-85.		2
27	Toxicity of Pre-heated Composites Polymerized Directly and Through CAD/CAM Overlay. Acta Stomatologica Croatica, 2018, 52, 203-217.	1.0	7
28	In Vitro Biocompatibility of Preheated Giomer and MicrofilledHybrid Composite. Acta Stomatologica Croatica, 2018, 52, 286-297.	1.0	2
29	Polymerization kinetics of experimental bioactive composites containing bioactive glass. Journal of Dentistry, 2018, 76, 83-88.	4.1	32
30	Realâ€ŧime curing characteristics of experimental resin composites containing amorphous calcium phosphate. European Journal of Oral Sciences, 2018, 126, 426-432.	1.5	3
31	Curing potential of experimental resin composites with systematically varying amount of bioactive glass: Degree of conversion, light transmittance and depth of cure. Journal of Dentistry, 2018, 75, 113-120.	4.1	26
32	Real-time Temperature Monitoring During Light-Curing of Experimental Composites. Acta Stomatologica Croatica, 2018, 52, 87-96.	1.0	4
33	Dentin Bond Strength of Experimental Composites Containing Bioactive Glass: Changes During Aging for up to 1 Year. Journal of Adhesive Dentistry, 2018, 20, 325-334.	0.5	12
34	Light transmittance and polymerization kinetics of amorphous calcium phosphate composites. Clinical Oral Investigations, 2017, 21, 1173-1182.	3.0	19
35	Genotoxic potential of dental bulk-fill resin composites. Dental Materials, 2017, 33, 788-795.	3.5	34
36	Long Term Degree of Conversion of two Bulk-Fill Composites. Acta Stomatologica Croatica, 2016, 50, 292-300.	1.0	26

#	Article	IF	CITATIONS
37	Remineralizing amorphous calcium phosphate based composite resins: the influence of inert fillers on monomer conversion, polymerization shrinkage, and microhardness. Croatian Medical Journal, 2016, 57, 465-473.	0.7	15
38	MICROHARDNESS OF BULK-FILL COMPOSITE MATERIALS. Acta Clinica Croatica, 2016, 55, 607-613.	0.2	20
39	Effects of bleaching agent on physical and aesthetic properties of restorative materials. Dental Materials Journal, 2016, 35, 788-795.	1.8	5
40	Criteria for the Replacement of Restorations: Academy of Operative Dentistry European Section. Operative Dentistry, 2016, 41, S48-S57.	1.2	45
41	Impedance changes during setting of amorphous calcium phosphate composites. Dental Materials, 2016, 32, 1312-1321.	3.5	14
42	Conversion and temperature rise of remineralizing composites reinforced with inert fillers. Journal of Dentistry, 2016, 48, 26-33.	4.1	17
43	Accounting for measurement reliability to improve the quality of inference in dental microhardness research: a worked example. Clinical Oral Investigations, 2016, 20, 1143-1149.	3.0	2
44	New Insights into the Setting Processes of Glass Ionomer Cements from Analysis of Dielectric Properties. Journal of the American Ceramic Society, 2015, 98, 3869-3876.	3.8	5
45	Optical Emission Spectroscopy of an Atmospheric Pressure Plasma Jet during Tooth Bleaching Gel Treatment. Applied Spectroscopy, 2015, 69, 1327-1333.	2.2	11
46	Monomer conversion and shrinkage force kinetics of low-viscosity bulk-fill resin composites. Acta Odontologica Scandinavica, 2015, 73, 474-480.	1.6	65
47	Pre-heating of high-viscosity bulk-fill resin composites: Effects on shrinkage force and monomer conversion. Journal of Dentistry, 2015, 43, 1358-1364.	4.1	89
48	Enamel and Dentin Microhardness and Chemical Composition After Experimental Light-activated Bleaching. Operative Dentistry, 2015, 40, E132-E141.	1.2	54
49	Real-Time Local Experimental Monitoring of the Bleaching Process. Photomedicine and Laser Surgery, 2015, 33, 230-235.	2.0	0
50	Temperature rise during experimental light-activated bleaching. Lasers in Medical Science, 2015, 30, 567-576.	2.1	29
51	Raman Spectroscopic Assessment of Degree of Conversion of Bulk-Fill Resin Composites – Changes at 24 Hours Post Cure. Operative Dentistry, 2015, 40, E92-E101.	1.2	83
52	Influence of irradiation time on subsurface degree of conversion and microhardness of high-viscosity bulk-fill resin composites. Clinical Oral Investigations, 2015, 19, 831-840.	3.0	116
53	Effect of silanized nanosilica addition on remineralizing and mechanical properties of experimental composite materials with amorphous calcium phosphate. Clinical Oral Investigations, 2014, 18, 783-792.	3.0	31
54	Optical Effects of Experimental Light-Activated Bleaching Procedures. Photomedicine and Laser Surgery, 2014, 32, 160-167.	2.0	26

#	Article	IF	CITATIONS
55	Impedance as a measure of setting reaction in glass ionomer cements. Journal of Non-Crystalline Solids, 2014, 389, 93-103.	3.1	7
56	Reinforcement of experimental composite materials based on amorphous calcium phosphate with inert fillers. Dental Materials, 2014, 30, 1052-1060.	3.5	45
57	Effect of temperature on post-cure polymerization of bulk-fill composites. Journal of Dentistry, 2014, 42, 1255-1260.	4.1	55
58	Atmospheric Pressure Plasma Jet as an Accelerator of Tooth Bleaching. Acta Stomatologica Croatica, 2014, 48, 268-278.	1.0	6
59	Degree of conversion and microhardness of dental composite resin materials. Journal of Molecular Structure, 2013, 1044, 299-302.	3.6	37
60	Optical approach in characterizing dental biomaterials. , 2013, , .		0
61	Antimicrobial Effectiveness of Intracanal Ozone Treatment. Acta Stomatologica Croatica, 2013, 47, 127-136.	1.0	0
62	Effect of Quality of Dental Restorations and Time Elapsed Since Placement on Biofilm Retention. Acta Stomatologica Croatica, 2013, 47, 322-328.	1.0	3
63	Efficacy of ozone on microorganisms in the tooth root canal. Collegium Antropologicum, 2013, 37, 101-7.	0.2	12
64	Genotoxic effect of two bleaching agents on oral mucosa. Cancer Genomics and Proteomics, 2013, 10, 209-15.	2.0	8
65	Evaluation of the slumping property of dental composites during modeling. Journal of Dental Sciences, 2012, 7, 330-335.	2.5	0
66	Risk factors for bruxism among Croatian navy employees. Journal of Oral Rehabilitation, 2012, 39, 668-676.	3.0	13
67	In vitro assessment of human dentin wear resulting from toothbrushing. Journal of the California Dental Association, 2010, 38, 109-13.	0.1	4
68	Ozone Application in Dentistry. Archives of Medical Research, 2009, 40, 136-137.	3.3	24
69	Influence of curing mode intensities on cell culture cytotoxicity/genotoxicity. American Journal of Dentistry, 2009, 22, 43-8.	0.1	7
70	The prevalence of proximal fractures of dental crowns with amalgam fillings. Collegium Antropologicum, 2009, 33, 449-53.	0.2	1
71	Cytotoxicity of Composite Materials Polymerized with LED Curing Units. Operative Dentistry, 2008, 33, 23-30.	1.2	40
72	Visualization of Marginal Integrity of Resin-Enamel Interface by Holographic Interferometry. Operative Dentistry, 2007, 32, 266-272.	1.2	5

#	Article	IF	CITATIONS
73	Composite Photopolymerization with Diode Laser. Operative Dentistry, 2007, 32, 279-284.	1.2	17
74	Comparison of Composite Curing Parameters: Effects of Light Source and Curing Mode on Conversion, Temperature Rise and Polymerization Shrinkage. Operative Dentistry, 2006, 31, 219-226.	1.2	59
75	Esthetic reconstruction of teeth in patient with dentinogenesis imperfectaa case report. Collegium Antropologicum, 2006, 30, 231-4.	0.2	1
76	Influence of light intensity from different curing units upon composite temperature rise. Journal of Oral Rehabilitation, 2005, 32, 362-367.	3.0	55
77	Measurement of linear polymerization contraction using digital laser interferometry. Operative Dentistry, 2005, 30, 346-52.	1.2	5
78	Digital interferometry for measuring of the resin composite thickness variation during blue light polymerization. Optics Communications, 2004, 231, 45-51.	2.1	22
79	Measurement of the composite resin thickness variations using digital interferometry. , 2003, 5144, 343.		0
80	Composite conversion and temperature rise using a conventional, plasma arc, and an experimental blue LED curing unit. Journal of Oral Rehabilitation, 2002, 29, 662-667.	3.0	99
81	Photopolymerization of composite resins with plasma light. Journal of Oral Rehabilitation, 2002, 29, 782-786.	3.0	21
82	Pulsed blue laser curing of hybrid composite resins. Biomaterials, 1997, 18, 1349-1354.	11.4	48
83	Polymerization of composites using pulsed laser. European Journal of Oral Sciences, 1995, 103, 394-398.	1.5	29