Alhosna Benjdia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10030181/publications.pdf

Version: 2024-02-01

257450 395702 1,718 36 24 33 citations g-index h-index papers 38 38 38 1575 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Crystallographic snapshots of a B12-dependent radical SAM methyltransferase. Nature, 2022, 602, 336-342.	27.8	28
2	Exploring the Biosynthetic Potential of TsrM, a B ₁₂ â€dependent Radical SAM Methyltransferase Catalyzing Nonâ€radical Reactions. Chemistry - A European Journal, 2022, 28, .	3.3	7
3	Radical SAM Enzymes and Ribosomallyâ€5ynthesized and Postâ€translationally Modified Peptides: A Growing Importance in the Microbiomes. Frontiers in Chemistry, 2021, 9, 678068.	3.6	16
4	Biosynthesis of the sactipeptide Ruminococcin C by the human microbiome: Mechanistic insights into thioether bond formation by radical SAM enzymes. Journal of Biological Chemistry, 2020, 295, 16665-16677.	3.4	18
5	Gold-Catalyzed Spirocyclization Reactions of $\langle i \rangle N \langle i \rangle$ -Propargyl Tryptamines and Tryptophans in Aqueous Media. Organic Letters, 2020, 22, 4344-4349.	4.6	26
6	The Epipeptide YydF Intrinsically Triggers the Cell Envelope Stress Response of Bacillus subtilis and Causes Severe Membrane Perturbations. Frontiers in Microbiology, 2020, 11, 151.	3 . 5	29
7	Ruminococcin C, an anti-clostridial sactipeptide produced by a prominent member of the human microbiota Ruminococcus gnavus. Journal of Biological Chemistry, 2019, 294, 14512-14525.	3.4	46
8	Mechanistic Investigations of PoyD, a Radical <i>S</i> -Adenosyl- <scp>I</scp> -methionine Enzyme Catalyzing Iterative and Directional Epimerizations in Polytheonamide A Biosynthesis. Journal of the American Chemical Society, 2018, 140, 2469-2477.	13.7	48
9	DNA Repair by the Radical SAM Enzyme Spore Photoproduct Lyase: From Biochemistry to Structural Investigations. Photochemistry and Photobiology, 2017, 93, 67-77.	2.5	15
10	Post-translational modification of ribosomally synthesized peptides by a radical SAM epimerase in Bacillus subtilis. Nature Chemistry, 2017, 9, 698-707.	13.6	88
11	Insights into the catalysis of a lysine-tryptophan bond in bacterial peptides by a SPASM domain radical S-adenosylmethionine (SAM) peptide cyclase. Journal of Biological Chemistry, 2017, 292, 10835-10844.	3.4	19
12	Radical SAM Enzymes in the Biosynthesis of Ribosomally Synthesized and Post-translationally Modified Peptides (RiPPs). Frontiers in Chemistry, 2017, 5, 87.	3.6	77
13	The B ₁₂ -Radical SAM Enzyme PoyC Catalyzes Valine C _{\hat{l}^2} -Methylation during Polytheonamide Biosynthesis. Journal of the American Chemical Society, 2016, 138, 15515-15518.	13.7	81
14	Carbon–sulfur bond-forming reaction catalysed by the radical SAM enzyme HydE. Nature Chemistry, 2016, 8, 491-500.	13.6	72
15	Thioether bond formation by SPASM domain radical SAM enzymes: $C < sub > \hat{l} \pm < / sub > \hat{l} \pm < $	4.1	50
16	Sulfatases and radical SAM enzymes: emerging themes in glycosaminoglycan metabolism and the human microbiota. Biochemical Society Transactions, 2016, 44, 109-115.	3.4	31
17	The thiostrepton A tryptophan methyltransferase TsrM catalyses a cob(II)alamin-dependent methyl transfer reaction. Nature Communications, 2015, 6, 8377.	12.8	57
18	Structural Perspectives on the Mechanism of the Radical SAM Enzyme, Spore Photoproduct Lyase. FASEB Journal, 2015, 29, 895.14.	0.5	0

#	Article	IF	CITATIONS
19	Radically New Methylation Reactions in Antibiotic Biosynthesis: Insights into the Mechanism of B 12 â€dependent Radical SAM enzymes FASEB Journal, 2015, 29, 573.39.	0.5	O
20	Rescuing DNA repair activity by rewiring the H-atom transfer pathway in the radical SAM enzyme, spore photoproduct lyase. Chemical Communications, 2014, 50, 14201-14204.	4.1	16
21	Characterization of Glycosaminoglycan (GAG) Sulfatases from the Human Gut Symbiont Bacteroides thetaiotaomicron Reveals the First GAG-specific Bacterial Endosulfatase. Journal of Biological Chemistry, 2014, 289, 24289-24303.	3.4	90
22	A Radical Transfer Pathway in Spore Photoproduct Lyase. Biochemistry, 2013, 52, 3041-3050.	2.5	32
23	Correction to A Radical Transfer Pathway in Spore Photoproduct Lyase. Biochemistry, 2013, 52, 4869-4869.	2.5	0
24	Structural insights into recognition and repair of UV-DNA damage by Spore Photoproduct Lyase, a radical SAM enzyme. Nucleic Acids Research, 2012, 40, 9308-9318.	14.5	73
25	Biosynthesis of F ₀ , Precursor of the F ₄₂₀ Cofactor, Requires a Unique Two Radical-SAM Domain Enzyme and Tyrosine as Substrate. Journal of the American Chemical Society, 2012, 134, 18173-18176.	13.7	66
26	Thiostrepton tryptophan methyltransferase expands the chemistry of radical SAM enzymes. Nature Chemical Biology, 2012, 8, 957-959.	8.0	105
27	DNA photolyases and SP lyase: structure and mechanism of light-dependent and independent DNA lyases. Current Opinion in Structural Biology, 2012, 22, 711-720.	5 . 7	29
28	Chondroitin-4-O-sulfatase from Bacteroides thetaiotaomicron: exploration of the substrate specificity. Carbohydrate Research, 2012, 353, 96-99.	2.3	8
29	Sulfatases and a Radical S-Adenosyl-l-methionine (AdoMet) Enzyme Are Key for Mucosal Foraging and Fitness of the Prominent Human Gut Symbiont, Bacteroides thetaiotaomicron. Journal of Biological Chemistry, 2011, 286, 25973-25982.	3.4	134
30	Anaerobic sulfataseâ€maturating enzyme – A mechanistic link with glycyl radicalâ€activating enzymes?. FEBS Journal, 2010, 277, 1906-1920.	4.7	55
31	An efficient, multiply promiscuous hydrolase in the alkaline phosphatase superfamily. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2740-2745.	7.1	87
32	Mechanistic Investigations of Anaerobic Sulfatase-Maturating Enzyme: Direct C $<$ sub $>$ $\hat{I}^2<$ /sub $>$ H-Atom Abstraction Catalyzed by a Radical AdoMet Enzyme. Journal of the American Chemical Society, 2009, 131, 8348-8349.	13.7	39
33	Anaerobic Sulfatase-maturating Enzymes, First Dual Substrate Radical S-Adenosylmethionine Enzymes. Journal of Biological Chemistry, 2008, 283, 17815-17826.	3.4	64
34	First evidences for a third sulfatase maturation system in prokaryotes from E. coli aslBandydeMdeletion mutants. FEBS Letters, 2007, 581, 1009-1014.	2.8	43
35	Anaerobic Sulfatase-Maturating Enzymes:Â Radical SAM Enzymes Able To Catalyze in Vitro Sulfatase Post-translational Modification. Journal of the American Chemical Society, 2007, 129, 3462-3463.	13.7	61
36	A New Type of Bacterial Sulfatase Reveals a Novel Maturation Pathway in Prokaryotes. Journal of Biological Chemistry, 2006, 281, 22464-22470.	3.4	108

3