Borja FernÃ;ndez-d'Arlas Bidegain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/100296/publications.pdf

Version: 2024-02-01

331670 361022 36 1,349 21 citations h-index papers

35 g-index 36 36 36 1753 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Self-assembly and crystallization of double crystalline aliphatic thermoplastic biopolyurethane and its nucleation with cellulose nanocrystals. Polymer, 2022, 241, 124521.	3.8	2
2	<scp>SSA</scp> fractionation of thermoplastic polyurethanes. Polymer Crystallization, 2021, 4, .	0.8	6
3	Effects and limits of highly efficient nucleating agents in thermoplastic polyurethane. Polymer, 2019, 180, 121676.	3.8	15
4	Tough and Functional Cross-linked Bioplastics from Sheep Wool Keratin. Scientific Reports, 2019, 9, 14810.	3.3	44
5	Improved aqueous solubility and stability of wool and feather proteins by reactive-extraction with H2O2 as bisulfide (SS) splitting agent. European Polymer Journal, 2018, 103, 187-197.	5.4	16
6	Ion-macromolecule interactions studied with model polyurethanes. Journal of Colloid and Interface Science, 2018, 509, 102-112.	9.4	2
7	Tailoring the Structure, Morphology, and Crystallization of Isodimorphic Poly(butylene) Tj ETQq1 1 0.784314 rgBT History. Macromolecules, 2017, 50, 597-608.		2 10 Tf 50 <mark>50</mark> 77
8	Influence of composition on the isothermal crystallisation of segmented thermoplastic polyurethanes. CrystEngComm, 2017, 19, 4720-4733.	2.6	28
9	Synthesis and Characterization of Polyurethane Rigid Foams from Soybean Oil-Based Polyol and Clycerol. Journal of Renewable Materials, 2016, 4, 275-284.	2.2	4
10	Tailoring the Morphology and Melting Points of Segmented Thermoplastic Polyurethanes by Self-Nucleation. Macromolecules, 2016, 49, 7952-7964.	4.8	63
11	Structure-property relationship in high urethane density polyurethanes. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 739-746.	2.1	12
12	Salting-Out Waterborne Catiomeric Polyurethanes for Drugs Encapsulation and Delivery. Macromolecular Chemistry and Physics, 2015, 216, 1914-1924.	2.2	7
13	Relationship between reagents molar ratio and dispersion stability and film properties of waterborne polyurethanes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 482, 554-561.	4.7	59
14	Studies on the morphology, properties and biocompatibility of aliphatic diisocyanate-polycarbonate polyurethanes. Polymer Degradation and Stability, 2015, 122, 153-160.	5.8	23
15	Polyurethanes containing a crystalline polyol and semiflexible urethane segments. Journal of Applied Polymer Science, 2015, 132, .	2.6	1
16	Comparison between exfoliated graphite, graphene oxide and multiwalled carbon nanotubes as reinforcing agents of a polyurethane elastomer. Journal of Thermoplastic Composite Materials, 2015, 28, 705-716.	4.2	10
17	Morphology–properties relationship in highâ€renewable content polyurethanes. Polymer Engineering and Science, 2014, 54, 2282-2291.	3.1	35
18	Biostability of polyurethanes. Study from the viewpoint of microphase separated structure. Polymer Degradation and Stability, 2014, 108, 195-200.	5.8	22

#	Article	IF	Citations
19	Functionalization of multiwalled carbon nanotubes with urethane segments and their interaction with solvents and a polyurethane elastomer. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	5
20	Block architecture influence on the structure and mechanical performance of drawn polyurethane elastomers. Polymer International, 2014, 63, 1278-1287.	3.1	12
21	Effect of H12MDI isomer composition on mechanical and physico-chemical properties of polyurethanes based on amorphous and semicrystalline soft segments. Polymer Bulletin, 2013, 70, 2193-2210.	3.3	31
22	Poly(urea)urethanes based on amorphous quaternizable hard segments and a crystalline polyol derived from castor oil. Colloid and Polymer Science, 2013, 291, 1247-1254.	2.1	4
23	Cellulose nanocrystals/polyurethane nanocomposites. Study from the viewpoint of microphase separated structure. Carbohydrate Polymers, 2013, 92, 751-757.	10.2	119
24	Optical, structural and electrical properties of polyaniline systems doped with C60 and small gap C60 fullerenes. Materials Chemistry and Physics, 2013, 142, 387-394.	4.0	23
25	In situ polymerization and characterization of elastomeric polyurethane-cellulose nanocrystal nanocomposites. Cell response evaluation. Cellulose, 2013, 20, 1819-1828.	4.9	50
26	Thermoplastic polyurethanes from renewable resources: effect of soft segment chemical structure and molecular weight on morphology and final properties. Polymer International, 2013, 62, 106-115.	3.1	131
27	Molecular Engineering of Elastic and Strong Supertough Polyurethanes. Macromolecules, 2012, 45, 3436-3443.	4.8	52
28	Study of the mechanical, electrical and morphological properties of PU/MWCNT composites obtained by two different processing routes. Composites Science and Technology, 2012, 72, 235-242.	7.8	40
29	Isocyanate-rich cellulose nanocrystals and their selective insertion in elastomeric polyurethane. Composites Science and Technology, 2011, 71, 1953-1960.	7.8	91
30	Influence of hard segment content and nature on polyurethane/multiwalled carbon nanotube composites. Composites Science and Technology, 2011, 71, 1030-1038.	7.8	80
31	Effect of diisocyanate structure on the properties and microstructure of polyurethanes based on polyols derived from renewable resources. Journal of Applied Polymer Science, 2011, 122, 3677-3685.	2.6	7 5
32	Microstructure and properties of polyurethanes derived from castor oil. Polymer Degradation and Stability, 2010, 95, 2175-2184.	5.8	140
33	Inverting Polyurethanes Synthesis: Effects on Nano/Micro-Structure and Mechanical Properties. Soft Materials, 2010, 9, 79-93.	1.7	25
34	Effect of Diisocyanate Structure on Thermal Properties and Microstructure of Polyurethanes Based on Polyols Derived from Renewable Resources. , 2010, , .		0
35	Kinetic studies of the polymerization of an epoxy resin modified with rhodamine B. Thermochimica Acta, 2009, 493, 6-13.	2.7	27
36	Surface Modification of Multiwalled Carbon Nanotubes via Esterification Using a Biodegradable Polyol. Journal of Nanoscience and Nanotechnology, 2009, 9, 6064-6071.	0.9	18