Borja FernÃ;ndez-d'Arlas Bidegain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/100296/publications.pdf

Version: 2024-02-01

331670 361022 36 1,349 21 citations h-index papers

35 g-index 36 36 36 1753 docs citations citing authors all docs times ranked

#	Article	IF	Citations
1	Microstructure and properties of polyurethanes derived from castor oil. Polymer Degradation and Stability, 2010, 95, 2175-2184.	5.8	140
2	Thermoplastic polyurethanes from renewable resources: effect of soft segment chemical structure and molecular weight on morphology and final properties. Polymer International, 2013, 62, 106-115.	3.1	131
3	Cellulose nanocrystals/polyurethane nanocomposites. Study from the viewpoint of microphase separated structure. Carbohydrate Polymers, 2013, 92, 751-757.	10.2	119
4	Isocyanate-rich cellulose nanocrystals and their selective insertion in elastomeric polyurethane. Composites Science and Technology, 2011, 71, 1953-1960.	7.8	91
5	Influence of hard segment content and nature on polyurethane/multiwalled carbon nanotube composites. Composites Science and Technology, 2011, 71, 1030-1038.	7.8	80
6	Tailoring the Structure, Morphology, and Crystallization of Isodimorphic Poly(butylene) Tj ETQq0 0 0 rgBT /Over History. Macromolecules, 2017, 50, 597-608.	ock 10 Tf 4.8	50 547 Td (su 77
7	Effect of diisocyanate structure on the properties and microstructure of polyurethanes based on polyols derived from renewable resources. Journal of Applied Polymer Science, 2011, 122, 3677-3685.	2.6	75
8	Tailoring the Morphology and Melting Points of Segmented Thermoplastic Polyurethanes by Self-Nucleation. Macromolecules, 2016, 49, 7952-7964.	4.8	63
9	Relationship between reagents molar ratio and dispersion stability and film properties of waterborne polyurethanes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 482, 554-561.	4.7	59
10	Molecular Engineering of Elastic and Strong Supertough Polyurethanes. Macromolecules, 2012, 45, 3436-3443.	4.8	52
11	In situ polymerization and characterization of elastomeric polyurethane-cellulose nanocrystal nanocomposites. Cell response evaluation. Cellulose, 2013, 20, 1819-1828.	4.9	50
12	Tough and Functional Cross-linked Bioplastics from Sheep Wool Keratin. Scientific Reports, 2019, 9, 14810.	3.3	44
13	Study of the mechanical, electrical and morphological properties of PU/MWCNT composites obtained by two different processing routes. Composites Science and Technology, 2012, 72, 235-242.	7.8	40
14	Morphology–properties relationship in highâ€renewable content polyurethanes. Polymer Engineering and Science, 2014, 54, 2282-2291.	3.1	35
15	Effect of H12MDI isomer composition on mechanical and physico-chemical properties of polyurethanes based on amorphous and semicrystalline soft segments. Polymer Bulletin, 2013, 70, 2193-2210.	3 . 3	31
16	Influence of composition on the isothermal crystallisation of segmented thermoplastic polyurethanes. CrystEngComm, 2017, 19, 4720-4733.	2.6	28
17	Kinetic studies of the polymerization of an epoxy resin modified with rhodamine B. Thermochimica Acta, 2009, 493, 6-13.	2.7	27
18	Inverting Polyurethanes Synthesis: Effects on Nano/Micro-Structure and Mechanical Properties. Soft Materials, 2010, 9, 79-93.	1.7	25

#	Article	IF	Citations
19	Optical, structural and electrical properties of polyaniline systems doped with C60 and small gap C60 fullerenes. Materials Chemistry and Physics, 2013, 142, 387-394.	4.0	23
20	Studies on the morphology, properties and biocompatibility of aliphatic diisocyanate-polycarbonate polyurethanes. Polymer Degradation and Stability, 2015, 122, 153-160.	5 . 8	23
21	Biostability of polyurethanes. Study from the viewpoint of microphase separated structure. Polymer Degradation and Stability, 2014, 108, 195-200.	5.8	22
22	Surface Modification of Multiwalled Carbon Nanotubes via Esterification Using a Biodegradable Polyol. Journal of Nanoscience and Nanotechnology, 2009, 9, 6064-6071.	0.9	18
23	Improved aqueous solubility and stability of wool and feather proteins by reactive-extraction with H2O2 as bisulfide (SS) splitting agent. European Polymer Journal, 2018, 103, 187-197.	5.4	16
24	Effects and limits of highly efficient nucleating agents in thermoplastic polyurethane. Polymer, 2019, 180, 121676.	3.8	15
25	Block architecture influence on the structure and mechanical performance of drawn polyurethane elastomers. Polymer International, 2014, 63, 1278-1287.	3.1	12
26	Structure-property relationship in high urethane density polyurethanes. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 739-746.	2.1	12
27	Comparison between exfoliated graphite, graphene oxide and multiwalled carbon nanotubes as reinforcing agents of a polyurethane elastomer. Journal of Thermoplastic Composite Materials, 2015, 28, 705-716.	4.2	10
28	Salting-Out Waterborne Catiomeric Polyurethanes for Drugs Encapsulation and Delivery. Macromolecular Chemistry and Physics, 2015, 216, 1914-1924.	2.2	7
29	<scp>SSA</scp> fractionation of thermoplastic polyurethanes. Polymer Crystallization, 2021, 4, .	0.8	6
30	Functionalization of multiwalled carbon nanotubes with urethane segments and their interaction with solvents and a polyurethane elastomer. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	5
31	Poly(urea)urethanes based on amorphous quaternizable hard segments and a crystalline polyol derived from castor oil. Colloid and Polymer Science, 2013, 291, 1247-1254.	2.1	4
32	Synthesis and Characterization of Polyurethane Rigid Foams from Soybean Oil-Based Polyol and Glycerol. Journal of Renewable Materials, 2016, 4, 275-284.	2.2	4
33	lon-macromolecule interactions studied with model polyurethanes. Journal of Colloid and Interface Science, 2018, 509, 102-112.	9.4	2
34	Self-assembly and crystallization of double crystalline aliphatic thermoplastic biopolyurethane and its nucleation with cellulose nanocrystals. Polymer, 2022, 241, 124521.	3.8	2
35	Polyurethanes containing a crystalline polyol and semiflexible urethane segments. Journal of Applied Polymer Science, 2015, 132, .	2.6	1
36	Effect of Diisocyanate Structure on Thermal Properties and Microstructure of Polyurethanes Based on Polyols Derived from Renewable Resources. , 2010, , .		0