Kenjiro Onimura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10027157/publications.pdf

Version: 2024-02-01

430874 526287 62 866 18 27 h-index citations g-index papers 62 62 62 421 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Asymmetric Anionic Polymerization of N-Substituted Maleimides withn-Butyllithiumâ^'Methylene-Bridged 2,2-Bis(oxazoline) Complexes. Macromolecules, 1998, 31, 5971-5976.	4.8	61
2	Effects of the chemical structure on the heat resistance of thermoplastic expandable microspheres. Journal of Applied Polymer Science, 2005, 96, 1306-1312.	2.6	60
3	Asymmetric Polymerization of N-1-Naphthylmaleimide with Chiral Anionic Initiator: Â Preparation of Highly Optically Active Poly (N-1-naphthylmaleimide). Macromolecules, 2001, 34, 7617-7623.	4.8	48
4	Asymmetric anionic polymerization of maleimides bearing bulky substituents. Journal of Polymer Science Part A, 2000, 38, 310-320.	2.3	39
5	Asymmetric polymerization of N-substituted maleimides with organolithium — bisoxazolines complex. Polymer Bulletin, 1997, 39, 437-444.	3.3	37
6	Asymmetric polymerization ofN-substituted maleimides with chiral oxazolidine-organolithium. Journal of Polymer Science Part A, 1999, 37, 473-482.	2.3	35
7	Synthesis and polymerization of chiral methacrylates bearing a cholesteryl or menthyl group. Journal of Polymer Science Part A, 2000, 38, 4315-4325.	2.3	35
8	Asymmetric anionic polymerization of N-1-naphthylmaleimide with chiral ligand-organometal complexes in toluene. Journal of Polymer Science Part A, 2001, 39, 3556-3565.	2.3	33
9	Asymmetric Anionic Polymerization of N-Substituted Maleimides with Et2Zn and Chiral Bisoxazolines. Chemistry Letters, 1998, 27, 791-792.	1.3	27
10	Asymmetric Polymerization of N-ortho- or para-Substituted Phenylmaleimide Using Chiral Anionic Initiators. Polymer Journal, 2003, 35, 245-254.	2.7	26
11	Syntheses of chemical-modified cellulose obtained from waste pulp. Journal of Applied Polymer Science, 2003, 90, 2059-2065.	2.6	25
12	Synthesis and Chiroptical Properties of (S)-(â^')-N-α-Methylbenzylmaleimide Polymers Containing Crystallinity. Polymer Journal, 2001, 33, 227-235.	2.7	24
13	Synthesis and properties of N-substituted maleimides conjugated with 1,4-phenylene or 2,5-thienylene polymers. Polymer Journal, 2010, 42, 290-297.	2.7	23
14	Synthesis and Properties of Poly(methacrylate) Bearing a Phosphorylcholine Analogous Group. Polymer Journal, 1998, 30, 17-22.	2.7	22
15	Asymmetric Anionic Polymerization of Chiral (R)-(+)-N-α-Methylbenzylmaleimide with Chiral Ligand/Organometal Complex. Polymer Journal, 2000, 32, 552-559.	2.7	21
16	Asymmetric Polymerizations of N-Substituted Maleimides Bearing L-Leucine Ester Derivatives and Chiral Recognition Abilities of Their Polymers. Polymer Journal, 2007, 39, 1047-1059.	2.7	20
17	Asymmetric anionic polymerization of optically activeN-1-cyclohexylethylmaleimide. Journal of Polymer Science Part A, 2004, 42, 4682-4692.	2.3	19
18	Synthesis and fluorescent properties of model compounds for conjugated polymer containing maleimide units at the main chain. Journal of Polymer Science Part A, 2011, 49, 3550-3558.	2.3	18

#	Article	IF	CITATIONS
19	Asymmetric Polymerization of (S)-N-Maleoyl-L-Leucine Allyl Ester and Chiral Recognition Ability of Its Polymer as Chiral Stationary Phase for HPLC. Polymer Journal, 2007, 39, 764-776.	2.7	17
20	Anionic polymerization of N-substituted maleimide with achiral and chiral amines as an initiator. Polymer Bulletin, 2011, 67, 631-640.	3.3	17
21	Asymmetric Anionic Polymerization of (S)-(â^')-N-Maleoyl-L-Valine Methyl Ester. Polymer Journal, 2004, 36, 878-887.	2.7	15
22	Syntheses and polymerizations of novel chiral poly(acrylamide) macromonomers and their chiral recognition abilities. Journal of Polymer Science Part A, 2002, 40, 1726-1741.	2.3	14
23	Synthesis and asymmetric polymerization of (<i>>S</i>)â€ <i>N</i> â€maleoylâ€ <scp>L</scp> â€leucine propargyl ester. Journal of Polymer Science Part A, 2007, 45, 3722-3738.	2.3	13
24	Synthesis and Polymerization of Poly(N-substituted maleimide) Macromonomers. Polymer Journal, 2001, 33, 81-88.	2.7	12
25	Synthesis of Novel Chiral Polymethacrylate Bearing Urethane and 1,1′-Binaphthalene Moieties and Its Chiral Recognition Ability. Polymer Journal, 2001, 33, 411-418.	2.7	11
26	Synthesis of terpolymers having a phospholipid polar group and poly(oxyethylene) in the side chain and their protein adsorption-resistance properties. Journal of Applied Polymer Science, 2002, 86, 1092-1105.	2.6	11
27	Synthesis and chiroptical properties of helical poly(phenylacetylene) bearing optically active chiral oxazoline Pendants. Polymer, 2012, 53, 2567-2573.	3.8	11
28	Asymmetric polymerization of N-1-naphthylmaleimide with (R,R)-N,N?-bis(3,5-di-tert-butylsalicylidene)-1, 2-cyclohexanediaminatocobalt (II). Journal of Polymer Science Part A, 2004, 42, 6157-6162.	2.3	10
29	Syntheses and biodegradability of benzylated waste pulps and graft copolymers from PBzs and L-lactic acid. Journal of Applied Polymer Science, 2004, 92, 2658-2664.	2.6	10
30	Synthesis and Polymerization of Novel (S)-N-Maleoyl-L-leucine Propargyl Ester. Polymer Journal, 2006, 38, 1288-1291.	2.7	10
31	Synthesis and fluorescent properties of conjugated copolymers containing maleimide and fluorene units at the main chain. Journal of Polymer Science Part A, 2013, 51, 4945-4956.	2.3	10
32	Synthesis of Novel Chiral Poly(methacrylate)s Having Urea Moieties and (S)-Methylbenzyl or l-Phenylalanine Methyl Ester Groups and Their Chiral Recognition Abilities. Polymer Journal, 2002, 34, 9-17.	2.7	9
33	Synthesis of Model Compound for Maleimide Polymer. Polymer Journal, 2000, 32, 1052-1055.	2.7	8
34	Asymmetric anionic polymerization of maleimide bearing an N- $4\hat{a}\in^2$ -benzo 15-crown-5 ether with an organometal/chiral ligand complex. Polymer Journal, 2010, 42, 632-639.	2.7	8
35	Pseudorotaxane-coupled Gel: A New Concept of Interlocked Gel Synthesis by Using Metathesis Reaction. Polymer Journal, 2008, 40, 205-211.	2.7	7
36	Synthesis and characterization of optically active poly(phenylene-ethynylene)s containing chiral oxazoline derivatives. Polymer Journal, 2012, 44, 224-231.	2.7	7

#	Article	IF	CITATIONS
37	Reaction of α,βâ€unsaturated carbodiimides with enamines leading to fused pyridine derivatives. Journal of Heterocyclic Chemistry, 1991, 28, 885-890.	2.6	6
38	Synthesis and polymerization of methacrylate bearing a phosphorylcholine, analogous moiety. Polymer Bulletin, 2001, 47, 121-126.	3.3	6
39	Facile Synthesis of Polymer-Supported Cinchona Alkaloid Catalysts for Asymmetric Michael Reaction. Polymer Journal, 2004, 36, 190-197.	2.7	6
40	Ring-opening metathesis polymerization of N-substituted-5-norbornene-2,3-dicarboximides in the presence of chiral additives. Polymer Journal, 2010, 42, 534-539.	2.7	6
41	Synthesis of Polyamide 6-block-Vinyl Polymers Using New Polyamide 6 Radical Initiators. Polymer Journal, 1999, 31, 864-871.	2.7	5
42	Asymmetric Group Transfer Polymerization of N-Cyclohexylmaleimide with Lewis Acid and Chiral Ligand Complexes. Polymer Journal, 2000, 32, 722-728.	2.7	5
43	Asymmetric anionic polymerization of n -diphenyl-methylitaconimide with chiral ligand-organometal complex. Polymer Bulletin, 2002, 48, 317-325.	3.3	5
44	Asymmetric Anionic Oligomerization of N-Substituted Citraconimide with the Chiral Ligand-Organometal Complex. Polymer Journal, 2000, 32, 543-551.	2.7	4
45	Polycondensation of Chiral 3,4-Dihydro- N -Substituted Succinimide and Phthalic Acid Dichloride. Polymer Bulletin, 2003, 50, 147-152.	3.3	4
46	Synthesis of novel polymethacrylate bearing an (S)-(+)-1-cyclohexylethyl urea group in the side chain and its chiral recognition ability. Journal of Applied Polymer Science, 2003, 90, 1018-1025.	2.6	4
47	Synthesis and property of hydrogel membranes consisting of fumaramate with phosphorylcholine group. Journal of Applied Polymer Science, 2004, 92, 2552-2557.	2.6	4
48	Asymmetric polymerizations of chiral 4â€benzylâ€2â€ethynyloxazoline with rhodium catalyst and chiroptical properties of the polymers. Chirality, 2011, 23, E43-51.	2.6	4
49	Asymmetric Coupling Polymerizations of 2,3-Dihalido- <i>N</i> -substituted Maleimide Derivatives in the Presence of Chiral Bisoxazolines. Chemistry Letters, 2013, 42, 366-368.	1.3	4
50	Conductivity Enhancement of Poly(vinylimidazoline)-based Electrolytes by Addition of Cascade Nitrile. Electrochemistry, 2002, 70, 94-98.	1.4	4
51	Synthesis of side-chain liquid crystalline polyacetylenes bearing succinic acid spacer. Polymer Journal, 2011, 43, 141-146.	2.7	3
52	Synthesis and asymmetric polymerization of chiral maleimides bearing an aza crown ether. Polymer Journal, 2011, 43, 279-284.	2.7	3
53	Asymmetric anionic polymerizations of N-substituted itaconimides having chiral amino-acid esters. Polymer Journal, 2011, 43, 516-524.	2.7	3
54	Synthesis of chiral side-chain liquid crystalline polyacetylenes bearing succinic acid spacer. Polymer Bulletin, 2012, 68, 623-634.	3.3	3

#	Article	IF	CITATIONS
55	Chiral oxazoline substituted optically active poly(<i>m</i> à€phenylene)s: Synthesis and coupling polymerizations of (<i>S</i>)â€4â€benzylâ€2â€(3,5â€dihalidephenyl) oxazoline using transition metal catalysts. Journal of Polymer Science Part A, 2013, 51, 1315-1322.	2.3	3
56	Synthesis and characterization of novel vinyl polymers containing thioester group in side chain. Journal of Polymer Science Part A, 1999, 37, 3871-3875.	2.3	2
57	Synthesis and Thermal Properties of Polyamide 6-block-Poly(cyclohexylmaleimide). Polymer Journal, 1999, 31, 500-505.	2.7	2
58	Synthesis and polymerization of novel methacrylate having glycerophosphorylcholine. Polymer Bulletin, 2002, 47, 415-420.	3.3	2
59	Synthesis and fluorescent properties of conjugated co-oligomers containing maleimide and carbazole units at the main chain. Polymer Journal, 2014, 46, 94-103.	2.7	2
60	Synthesis and optical properties of conjugated maleimide molecules containing amino with aggregation-induced emission enhancement (AIEE). New Journal of Chemistry, 2022, 46, 1232-1237.	2.8	2
61	Asymmetric anionic polymerization of N-substituted maleimides bearing an azo group with chiral anionic initiators. Polymer Journal, 2011, 43, 147-154.	2.7	1
62	Grafted of the Vinyl Monomer <i>via</i> ATRP Using the Cellulose Derivative for the Macroinitiator. Kobunshi Ronbunshu, 2008, 65, 700-706.	0.2	0