Francesca M Spagnoli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1002623/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of a 3D atlas of the embryonic pancreas for topological and quantitative analysis of heterologous cell interactions. Development (Cambridge), 2022, 149, .	1.2	11
2	Functional genomics and the future of iPSCs in disease modeling. Stem Cell Reports, 2022, 17, 1033-1047.	2.3	16
3	Employing core regulatory circuits to define cell identity. EMBO Journal, 2021, 40, e106785.	3.5	23
4	Engineering life in synthetic systems. Development (Cambridge), 2021, 148, .	1.2	0
5	Quantitative lineage analysis identifies a hepato-pancreato-biliary progenitor niche. Nature, 2021, 597, 87-91.	13.7	25
6	The postnatal pancreatic microenvironment guides \hat{I}^2 cell maturation through BMP4 production. Developmental Cell, 2021, 56, 2703-2711.e5.	3.1	10
7	Pancreatic cell fate specification: insights into developmental mechanisms and their application for lineage reprogramming. Current Opinion in Genetics and Development, 2021, 70, 32-39.	1.5	5
8	Direct Lineage Reprogramming: Harnessing Cell Plasticity between Liver and Pancreas. Cold Spring Harbor Perspectives in Biology, 2020, 12, a035626.	2.3	7
9	A Specialized Niche in the Pancreatic Microenvironment Promotes Endocrine Differentiation. Developmental Cell, 2020, 55, 150-162.e6.	3.1	37
10	Whole organism small molecule screen identifies novel regulators of pancreatic endocrine development. Development (Cambridge), 2019, 146, .	1.2	22
11	Mechanisms, Hallmarks, and Implications of Stem Cell Quiescence. Stem Cell Reports, 2019, 12, 1190-1200.	2.3	111
12	Pancreas organogenesis: The interplay between surrounding microenvironment(s) and epithelium-intrinsic factors. Current Topics in Developmental Biology, 2019, 132, 221-256.	1.0	20
13	The RhoGAP Stard13 controls insulin secretion through F-actin remodeling. Molecular Metabolism, 2018, 8, 96-105.	3.0	17
14	Location matters for insulin-producing cells. Nature, 2018, 564, 50-51.	13.7	2
15	Robo signalling controls pancreatic progenitor identity by regulating Tead transcription factors. Nature Communications, 2018, 9, 5082.	5.8	26
16	Stepwise reprogramming of liver cells to a pancreas progenitor state by the transcriptional regulator Tgif2. Nature Communications, 2017, 8, 14127.	5.8	41
17	The histone methyltransferase Setd7 promotes pancreatic progenitor identity. Development (Cambridge), 2016, 143, 3573-3581.	1.2	12
18	Xenopus as a model system for studying pancreatic development and diabetes. Seminars in Cell and Developmental Biology, 2016, 51, 106-116.	2.3	11

#	Article	IF	CITATIONS
19	Simply the right time to turn on insulin. EMBO Journal, 2015, 34, 1740-1742.	3.5	2
20	In vivo reprogramming for tissue repair. Nature Cell Biology, 2015, 17, 204-211.	4.6	86
21	Glimpse into Hox and tale regulation of cell differentiation and reprogramming. Developmental Dynamics, 2014, 243, 76-87.	0.8	24
22	Recessive Mutations in <i>PCBD1</i> Cause a New Type of Early-Onset Diabetes. Diabetes, 2014, 63, 3557-3564.	0.3	41
23	Two Novel GATA6 Mutations Cause Childhood-Onset Diabetes Mellitus, Pancreas Malformation and Congenital Heart Disease. Hormone Research in Paediatrics, 2013, 79, 250-256.	0.8	28
24	Mutually exclusive signaling signatures define the hepatic and pancreatic progenitor cell lineage divergence. Genes and Development, 2013, 27, 1932-1946.	2.7	70
25	Rho signalling restriction by the RhoGAP <i>Stard13</i> integrates growth and morphogenesis in the pancreas. Development (Cambridge), 2013, 140, 126-135.	1.2	33
26	RhoGAP control of pancreas development. Small GTPases, 2013, 4, 127-131.	0.7	1
27	A System for ex vivo Culturing of Embryonic Pancreas. Journal of Visualized Experiments, 2012, , e3979.	0.2	16
28	The miR-430/427/302 Family Controls Mesendodermal Fate Specification via Species-Specific Target Selection. Developmental Cell, 2009, 16, 517-527.	3.1	204
29	The <i>Gata5</i> target, <i>TGIF2</i> , defines the pancreatic region by modulating BMP signals within the endoderm. Development (Cambridge), 2008, 135, 451-461.	1.2	41
30	Balancing BMP Signaling through Integrated Inputs into the Smad1 Linker. Molecular Cell, 2007, 25, 441-454.	4.5	381
31	Guiding embryonic stem cells towards differentiation: lessons from molecular embryology. Current Opinion in Genetics and Development, 2006, 16, 469-475.	1.5	32
32	The RNA-binding protein, Vg1RBP, is required for pancreatic fate specification. Developmental Biology, 2006, 292, 442-456.	0.9	38
33	Snail controls differentiation of hepatocytes by repressing HNF4α expression. Journal of Cellular Physiology, 2006, 209, 230-238.	2.0	71
34	Identification of a Bipotential Precursor Cell in Hepatic Cell Lines Derived from Transgenic Mice Expressing Cyto-Met in the Liver. Journal of Cell Biology, 1998, 143, 1101-1112.	2.3	79