Ravindranath Tagore Yadlapalli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1002448/publications.pdf

Version: 2024-02-01

Ravindranath Tagore

#	Article	IF	CITATIONS
1	Super capacitors for energy storage: Progress, applications and challenges. Journal of Energy Storage, 2022, 49, 104194.	8.1	82
2	Fuzzy logic control based high step up converter for electric vehicle applications. International Journal of Innovative Computing and Applications, 2022, 13, 41.	0.2	0
3	A review on energy efficient technologies for electric vehicle applications. Journal of Energy Storage, 2022, 50, 104212.	8.1	41
4	Dynamic analysis of solar powered two-stage dc–dc converter with MPPT and voltage regulation. International Journal of Dynamics and Control, 2022, 10, 1745-1759.	2.5	5
5	Analysis, design and implementation of a fixed frequency PWM-based sliding-mode controller for quadratic buck converter. International Journal of Power Electronics, 2021, 13, 66.	0.2	1
6	Modeling and Control of Hybrid Power Sourced High Gain DC-DC Converter. Journal of Engineering Science and Technology Review, 2021, 14, 119-127.	0.4	1
7	Analysis, design and implementation of a fixed frequency PWM-based sliding-mode controller for quadratic buck converter. International Journal of Power Electronics, 2021, 13, 66.	0.2	0
8	Advancements in power conditioning units for electric vehicle applications: a review. International Journal of Electric and Hybrid Vehicles, 2021, 13, 81.	0.3	4
9	Advancements in power conditioning units for electric vehicle applications: a review. International Journal of Electric and Hybrid Vehicles, 2021, 13, 81.	0.3	1
10	Advancements in energy efficient <scp>GaN</scp> power devices and power modules for electric vehicle applications: a review. International Journal of Energy Research, 2021, 45, 12638-12664.	4.5	32
11	An overview of energy efficient solid state LED driver topologies. International Journal of Energy Research, 2020, 44, 612-630.	4.5	15
12	Implementation of fuzzy logic controller-based quadratic buck converter for LED lamp driver applications. International Journal of Innovative Computing and Applications, 2020, 11, 159.	0.2	1
13	Modelling, design and implementation of quadratic buck converter for low power applications. International Journal of Power Electronics, 2020, 11, 322.	0.2	2
14	Modelling, design and implementation of quadratic buck converter for low power applications. International Journal of Power Electronics, 2020, 11, 322.	0.2	0
15	Implementation of fuzzy logic controller-based quadratic buck converter for LED lamp driver applications. International Journal of Innovative Computing and Applications, 2020, 11, 159.	0.2	0
16	Modelling, simulation and control of a fuel cell-powered laptop computer voltage regulator module. International Journal of Hydrogen Energy, 2019, 44, 11012-11019.	7.1	10
17	Development of fuzzy logic controller for improved interline unified power quality conditioner. International Journal of Innovative Computing and Applications, 2019, 10, 86.	0.2	1
18	Development of fuzzy logic controller for improved interline unified power quality conditioner. International Journal of Innovative Computing and Applications, 2019, 10, 86.	0.2	0

#	Article	IF	CITATIONS
19	Efficiency analysis of maximum power point tracking techniques for photovoltaic systems under variable conditions. International Journal of Innovative Computing and Applications, 2018, 9, 230.	0.2	13
20	Efficiency analysis of maximum power point tracking techniques for photovoltaic systems under variable conditions. International Journal of Innovative Computing and Applications, 2018, 9, 230.	0.2	2
21	Dynamic performance comparison of Quadratic buck converter with analog and Digital average current-mode controllers. , 2017, , .		2
22	Efficieny analysis of Quadratic buck converter for LED lamp driver applications. , 2017, , .		6
23	An efficient sliding-mode current controller with reduced flickering for quadratic buck converter used as LED lamp driver. International Journal of Power Electronics, 2014, 6, 345.	0.2	6
24	A fast-response sliding-mode controller for quadratic buck converter. International Journal of Power Electronics, 2014, 6, 103.	0.2	9