Hong-Liang Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1002356/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Olfactory biosensor for insect semiochemicals analysis by impedance sensing of odorant-binding proteins on interdigitated electrodes. Biosensors and Bioelectronics, 2015, 67, 662-669.	10.1	71
2	Olfactory biosensor using odorant-binding proteins from honeybee: Ligands of floral odors and pheromones detection by electrochemical impedance. Sensors and Actuators B: Chemical, 2014, 193, 420-427.	7.8	63
3	Neonicotinoid insecticide interact with honeybee odorant-binding protein: Implication for olfactory dysfunction. International Journal of Biological Macromolecules, 2015, 81, 624-630.	7.5	62
4	Impedance sensing and molecular modeling of an olfactory biosensor based on chemosensory proteins of honeybee. Biosensors and Bioelectronics, 2013, 40, 174-179.	10.1	61
5	Molecular recognition of floral volatile with two olfactory related proteins in the Eastern honeybee (Apis cerana). International Journal of Biological Macromolecules, 2013, 56, 114-121.	7.5	41
6	Chemosensory proteins of the eastern honeybee, Apis cerana: Identification, tissue distribution and olfactory related functional characterization. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2016, 194-195, 11-19.	1.6	37
7	Binding interaction between a queen pheromone component HOB and pheromone binding protein ASP1 of Apis cerana. International Journal of Biological Macromolecules, 2015, 72, 430-436.	7.5	34
8	Caffeic acid phenethyl ester exhibiting distinctive binding interaction with human serum albumin implies the pharmacokinetic basis of propolis bioactive components. Journal of Pharmaceutical and Biomedical Analysis, 2016, 122, 21-28.	2.8	31
9	Functional Characteristics, Electrophysiological and Antennal Immunolocalization of Ceneral Odorant-Binding Protein 2 in Tea Geometrid, Ectropis obliqua. International Journal of Molecular Sciences, 2018, 19, 875.	4.1	30
10	Molecular Identification of cDNA, Immunolocalization, and Expression of a Putative Odorant-Binding Protein from an Asian Honey Bee, Apis cerana cerana. Journal of Chemical Ecology, 2008, 34, 1593-1601.	1.8	29
11	Sublethal doses of neonicotinoid imidacloprid can interact with honey bee chemosensory protein 1 (CSP1) and inhibit its function. Biochemical and Biophysical Research Communications, 2017, 486, 391-397.	2.1	23
12	Schaftoside Interacts With NICDK1 Protein: A Mechanism of Rice Resistance to Brown Planthopper, Nilaparvata lugens. Frontiers in Plant Science, 2018, 9, 710.	3.6	22
13	Nanoplasmonic monitoring of odorants binding to olfactory proteins from honeybee as biosensor for chemical detection. Sensors and Actuators B: Chemical, 2015, 221, 341-349.	7.8	21
14	Physicochemical Evidence on Sublethal Neonicotinoid Imidacloprid Interacting with an Odorant-Binding Protein from the Tea Geometrid Moth, <i>Ectropis obliqua</i> . Journal of Agricultural and Food Chemistry, 2017, 65, 3276-3284.	5.2	21
15	Physicochemical Basis and Comparison of Two Type II Sex Pheromone Components Binding with Pheromone-Binding Protein 2 from Tea Geometrid, <i>Ectropis obliqua</i> . Journal of Agricultural and Food Chemistry, 2018, 66, 13084-13095.	5.2	20
16	The chemosensory protein of Chinese honeybee, Apis cerana cerana: Molecular cloning of cDNA, immunocytochemical localization and expression. Science Bulletin, 2007, 52, 1355-1364.	1.7	17
17	The effects of clove oil on the enzyme activity of Varroa destructor Anderson and Trueman (Arachnida: Acari: Varroidae). Saudi Journal of Biological Sciences, 2017, 24, 996-1000.	3.8	17
18	Combinatorial multispectral, thermodynamics, docking and site-directed mutagenesis reveal the cognitive characteristics of honey bee chemosensory protein to plant semiochemical. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 201, 346-353.	3.9	17

Hong-Liang Li

#	Article	IF	CITATIONS
19	Various Bee Pheromones Binding Affinity, Exclusive Chemosensillar Localization, and Key Amino Acid Sites Reveal the Distinctive Characteristics of Odorant-Binding Protein 11 in the Eastern Honey Bee, Apis cerana. Frontiers in Physiology, 2018, 9, 422.	2.8	14
20	Chemical structure of semiochemicals and key binding sites together determine the olfactory functional modes of odorant-binding protein 2 in Eastern honey bee, Apis cerana. International Journal of Biological Macromolecules, 2020, 145, 876-884.	7.5	11
21	Unique dynamic mode between Artepillin C and human serum albumin implies the characteristics of Brazilian green propolis representative bioactive component. Scientific Reports, 2020, 10, 17277.	3.3	6
22	Fluorescence Investigation on the Interaction of a Prevalent Competitive Fluorescent Probe with Entomic Odorant Binding Protein. Spectroscopy Letters, 2013, 46, 527-534.	1.0	5
23	Study on Specific <i>Apis cerana</i> Honeybee Queen Pheromone Biosensor Based on Pheromone-Binding Protein ASP1. IEEE Sensors Journal, 2021, 21, 8855-8860.	4.7	3
24	Differences in ASP1 expression and binding dynamics to queen mandibular pheromone HOB between Apis mellifera and Apis cerana workers reveal olfactory adaptation to colony organization. International Journal of Biological Macromolecules, 2022, 217, 583-591.	7.5	3
25	Application of indigenous honeybees in dispersing Trichoderma harzianum spores for control of the strawberry grey mould. Biocontrol Science and Technology, 2021, 31, 418-429.	1.3	1