Heah Cheng-Yong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1002124/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thin fly ash/ ladle furnace slag geopolymer: Effect of elevated temperature exposure on flexural properties and morphological characteristics. Ceramics International, 2022, 48, 16562-16575.	4.8	16
2	Thermo-mechanical behaviour of fly ash-ladle furnace slag blended geopolymer with incorporation of decahydrate borax. Construction and Building Materials, 2022, 331, 127337.	7.2	6
3	Preparation of Fly Ash-Ladle Furnace Slag Blended Geopolymer Foam via Pre-Foaming Method with Polyoxyethylene Alkyether Sulphate Incorporation. Materials, 2022, 15, 4085.	2.9	3
4	Improvements of Flexural Properties and Thermal Performance in Thin Geopolymer Based on Fly Ash and Ladle Furnace Slag Using Borax Decahydrates. Materials, 2022, 15, 4178.	2.9	10
5	Effect of phosphate addition on room-temperature-cured fly ash-metakaolin blend geopolymers. Construction and Building Materials, 2021, 270, 121486.	7.2	22
6	Properties of polyaniline/graphene oxide (PANI/GO) composites: effect of GO loading. Polymer Bulletin, 2021, 78, 4835-4847.	3.3	15
7	Evaluation of the Effect of Silica Fume on Amorphous Fly Ash Geopolymers Exposed to Elevated Temperature. Magnetochemistry, 2021, 7, 9.	2.4	18
8	Elevated-Temperature Performance, Combustibility and Fire Propagation Index of Fly Ash-Metakaolin Blend Geopolymers with Addition of Monoaluminium Phosphate (MAP) and Aluminum Dihydrogen Triphosphate (ATP). Materials, 2021, 14, 1973.	2.9	6
9	Formulation, mechanical properties and phase analysis of fly ash geopolymer with ladle furnace slag replacement. Journal of Materials Research and Technology, 2021, 12, 1212-1226.	5.8	35
10	Cold-pressed fly ash geopolymers: effect of formulation on mechanical and morphological characteristics. Journal of Materials Research and Technology, 2021, 15, 3028-3046.	5.8	15
11	Effect of anisotropic pores on the material properties of metakaolin geopolymer composites incorporated with corrugated fiberboard and rubber. Journal of Materials Research and Technology, 2021, 14, 822-834.	5.8	5
12	Evaluation of flexural properties and characterisation of 10-mm thin geopolymer based on fly ash and ladle furnace slag. Journal of Materials Research and Technology, 2021, 15, 163-176.	5.8	25
13	Behaviour changes of ground granulated blast furnace slag geopolymers at high temperature. Advances in Cement Research, 2020, 32, 465-475.	1.6	40
14	Influence of Sputtering Temperature of TiO2 Deposited onto Reduced Graphene Oxide Nanosheet as Efficient Photoanodes in Dye-Sensitized Solar Cells. Molecules, 2020, 25, 4852.	3.8	5
15	Correlation between pore structure, compressive strength and thermal conductivity of porous metakaolin geopolymer. Construction and Building Materials, 2020, 247, 118641.	7.2	119
16	STUDY OF FLY ASH GEOPOLYMER AND FLY ASH/SLAG GEOPOLYMER IN TERM OF PHYSICAL AND MECHANICAL PROPERTIES. European Journal of Materials Science and Engineering, 2020, 5, 187-198.	0.1	4
17	Effect of Sodium Hydroxide Molarity on Physical, Mechanical and Thermal Conductivity of Metakaolin Geopolymers. IOP Conference Series: Materials Science and Engineering, 2018, 343, 012015.	0.6	21
18	Thermophysical Properties of Metakaolin Geopolymers Based on Na ₂ SiO ₃ /NaOH Ratio. Solid State Phenomena, 2018, 280, 487-493.	0.3	4

Heah Cheng-Yong

#	Article	IF	CITATIONS
19	The Mechanical Properties and Thermal Resistance of Fly Ash Geopolymer Foams. Solid State Phenomena, 2018, 281, 175-181.	0.3	1
20	Effect of Alkali Concentration on Fly Ash Geopolymers. IOP Conference Series: Materials Science and Engineering, 2018, 343, 012013.	0.6	12
21	Thermal Resistance Variations of Fly Ash Geopolymers: Foaming Responses. Scientific Reports, 2017, 7, 45355.	3.3	103
22	Chemical composition and strength of dolomite geopolymer composites. AIP Conference Proceedings, 2017, , .	0.4	8
23	Formation of one-part-mixing geopolymers and geopolymer ceramics from geopolymer powder. Construction and Building Materials, 2017, 156, 9-18.	7.2	109
24	Structure and properties of clay-based geopolymer cements: A review. Progress in Materials Science, 2016, 83, 595-629.	32.8	371
25	Review of Geopolymer Materials for Thermal Insulating Applications. Key Engineering Materials, 2015, 660, 17-22.	0.4	14
26	Kaolin-based geopolymers with various NaOH concentrations. International Journal of Minerals, Metallurgy and Materials, 2013, 20, 313-322.	4.9	84
27	Strength and Microstructural Properties of Mechanically-Activated Kaolin Geopolymers. Advanced Materials Research, 2012, 626, 926-930.	0.3	13
28	Calcined Kaolin Geopolymeric Powder: Influence of Water-to-Geopolymeric Powder Ratio. Advanced Materials Research, 2012, 548, 48-53.	0.3	1
29	Study on solids-to-liquid and alkaline activator ratios on kaolin-based geopolymers. Construction and Building Materials, 2012, 35, 912-922.	7.2	303
30	Optimization of solids-to-liquid and alkali activator ratios of calcined kaolin geopolymeric powder. Construction and Building Materials, 2012, 37, 440-451.	7.2	106
31	Processing and characterization of calcined kaolin cement powder. Construction and Building Materials, 2012, 30, 794-802.	7.2	146
32	Effect of Curing Profile on Kaolin-based Geopolymers. Physics Procedia, 2011, 22, 305-311.	1.2	141
33	Influence of Solids-to-liquid and Activator Ratios on Calcined Kaolin Cement Powder. Physics Procedia, 2011, 22, 312-317.	1.2	45
34	Curing Behavior on Kaolin-Based Geopolymers. Advanced Materials Research, 0, 548, 42-47.	0.3	12
35	Influence of Solidification Process on Calcined Kaolin Geopolymeric Powder. Advanced Materials Research, 0, 479-481, 286-291.	0.3	2
36	Effect of Mechanical Activation on Kaolin-Based Geopolymers. Advanced Materials Research, 0, 479-481, 357-361.	0.3	4

#	Article	IF	CITATIONS
37	Effect of Curing Regimes on Metakaolin Geopolymer Pastes Produced from Geopolymer Powder. Advanced Materials Research, 0, 626, 931-936.	0.3	6