Crystal A Kolden

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1001967/publications.pdf

Version: 2024-02-01

86 papers 5,902 citations

94269 37 h-index 74 g-index

90 all docs

90 docs citations

90 times ranked 5302 citing authors

#	Article	IF	CITATIONS
1	Vegetation fires in the Anthropocene. Nature Reviews Earth & Environment, 2020, 1, 500-515.	12.2	419
2	Human exposure and sensitivity to globally extreme wildfire events. Nature Ecology and Evolution, 2017, 1, 58.	3.4	359
3	Climate change presents increased potential for very large fires in the contiguous United States. International Journal of Wildland Fire, 2015, 24, 892.	1.0	336
4	Climate change is increasing the likelihood of extreme autumn wildfire conditions across California. Environmental Research Letters, 2020, 15, 094016.	2.2	322
5	Relationships between climate and macroscale area burned in the western United States. International Journal of Wildland Fire, 2013, 22, 1003.	1.0	300
6	Global patterns of interannual climate–fire relationships. Global Change Biology, 2018, 24, 5164-5175.	4.2	191
7	Climate Change in Western US Deserts: Potential for Increased Wildfire and Invasive Annual Grasses. Rangeland Ecology and Management, 2011, 64, 471-478.	1.1	189
8	Global and Regional Trends and Drivers of Fire Under Climate Change. Reviews of Geophysics, 2022, 60,	9.0	182
9	Rethinking resilience to wildfire. Nature Sustainability, 2019, 2, 797-804.	11.5	174
10	The Science of Firescapes: Achieving Fire-Resilient Communities. BioScience, 2016, 66, 130-146.	2.2	157
11	Mapped versus actual burned area within wildfire perimeters: Characterizing the unburned. Forest Ecology and Management, 2012, 286, 38-47.	1.4	155
12	Adapting western North American forests to climate change and wildfires: 10 common questions. Ecological Applications, 2021, 31, e02433.	1.8	133
13	Recent Tree Mortality in the Western United States from Bark Beetles and Forest Fires. Forest Science, 2016, 62, 141-153.	0.5	130
14	We're Not Doing Enough Prescribed Fire in the Western United States to Mitigate Wildfire Risk. Fire, 2019, 2, 30.	1.2	128
15	Limitations and utilisation of Monitoring Trends in Burn Severity products for assessing wildfire severity in the USA. International Journal of Wildland Fire, 2015, 24, 1023.	1.0	124
16	Fire Behavior, Weather, and Burn Severity of the 2007 Anaktuvuk River Tundra Fire, North Slope, Alaska. Arctic, Antarctic, and Alpine Research, 2009, 41, 309-316.	0.4	115
17	Human–environmental drivers and impacts of the globally extreme 2017 Chilean fires. Ambio, 2019, 48, 350-362.	2.8	114
18	Remote sensing the vulnerability of vegetation in natural terrestrial ecosystems. Remote Sensing of Environment, 2014, 154, 322-337.	4.6	107

#	Article	IF	CITATIONS
19	Projected increases in western US forest fire despite growing fuel constraints. Communications Earth & Environment, 2021, 2, .	2.6	102
20	Vegetation, topography and daily weather influenced burn severity in central Idaho and western Montana forests. Ecosphere, 2015, 6, 1-23.	1.0	101
21	Detecting unburned areas within wildfire perimeters using Landsat and ancillary data across the northwestern United States. Remote Sensing of Environment, 2016, 186, 275-285.	4.6	97
22	Disturbance refugia within mosaics of forest fire, drought, and insect outbreaks. Frontiers in Ecology and the Environment, 2020, 18, 235-244.	1.9	91
23	Carbon stocks of trees killed by bark beetles and wildfire in the western United States. Environmental Research Letters, 2013, 8, 035032.	2.2	83
24	Multi-temporal LiDAR and Landsat quantification of fire-induced changes to forest structure. Remote Sensing of Environment, 2017, 191, 419-432.	4.6	82
25	Climatic influences on interannual variability in regional burn severity across western US forests. International Journal of Wildland Fire, 2017, 26, 269.	1.0	76
26	Relative importance of weather and climate on wildfire growth in interior Alaska. International Journal of Wildland Fire, 2011, 20, 479.	1.0	70
27	Towards a new paradigm in fire severity research using dose–response experiments. International Journal of Wildland Fire, 2016, 25, 158.	1.0	70
28	Controls on interannual variability in lightning-caused fire activity in the western US. Environmental Research Letters, 2016, 11, 045005.	2.2	64
29	Fire Frequency, Area Burned, and Severity: A Quantitative Approach to Defining a Normal Fire Year. Fire Ecology, 2011, 7, 51-65.	1.1	62
30	The missing fire: quantifying human exclusion of wildfire in Pacific Northwest forests, <scp>USA</scp> . Ecosphere, 2019, 10, e02702.	1.0	60
31	Human-related ignitions concurrent with high winds promote large wildfires across the USA. International Journal of Wildland Fire, 2018, 27, 377.	1.0	57
32	Fixing a snag in carbon emissions estimates from wildfires. Global Change Biology, 2019, 25, 3985-3994.	4.2	53
33	Increasing Synchronous Fire Danger in Forests of the Western United States. Geophysical Research Letters, 2021, 48, e2020GL091377.	1.5	53
34	Fire Refugia: What Are They, and Why Do They Matter for Global Change?. BioScience, 0, , .	2.2	51
35	Assessing Accuracy of Manually-mapped Wildfire Perimeters in Topographically Dissected Areas. Fire Ecology, 2007, 3, 22-31.	1.1	42
36	Spatial Distribution of Wildfires Ignited under Katabatic versus Non-Katabatic Winds in Mediterranean Southern California USA. Fire, 2018, 1, 19.	1,2	41

#	Article	IF	Citations
37	Multiâ€scalar influence of weather and climate on very largeâ€fires in the Eastern United States. International Journal of Climatology, 2015, 35, 2180-2186.	1.5	39
38	Effects of fire radiative energy density dose on Pinus contorta and Larix occidentalis seedling physiology and mortality. International Journal of Wildland Fire, 2017, 26, 82.	1.0	39
39	Climate Contributors to Forest Mosaics: Ecological Persistence Following Wildfire. Northwest Science, 2015, 89, 219-238.	0.1	38
40	A Socio-Ecological Approach to Mitigating Wildfire Vulnerability in the Wildland Urban Interface: A Case Study from the 2017 Thomas Fire. Fire, 2019, 2, 9.	1.2	38
41	How climate change and fire exclusion drive wildfire regimes at actionable scales. Environmental Research Letters, 2021, 16, 024051.	2.2	38
42	The importance of small fire refugia in the central Sierra Nevada, California, USA. Forest Ecology and Management, 2019, 432, 1041-1052.	1.4	37
43	Impacts of fire radiative flux on mature Pinus ponderosa growth and vulnerability to secondary mortality agents. International Journal of Wildland Fire, 2017, 26, 95.	1.0	36
44	Fire Effects on Historical Wildfire Refugia in Contemporary Wildfires. Forests, 2017, 8, 400.	0.9	36
45	Spatiotemporal patterns of unburned areas within fire perimeters in the northwestern United States from 1984 to 2014. Ecosphere, 2018, 9, e02029.	1.0	36
46	Wildfire Management and Forecasting Fire Potential: The Roles of Climate Information and Social Networks in the Southwest United States. Weather, Climate, and Society, 2012, 4, 90-102.	0.5	35
47	Population exposure to pre-emptive de-energization aimed at averting wildfires in Northern California. Environmental Research Letters, 2020, 15, 094046.	2.2	34
48	Spectral Indices Accurately Quantify Changes in Seedling Physiology Following Fire: Towards Mechanistic Assessments of Post-Fire Carbon Cycling. Remote Sensing, 2016, 8, 572.	1.8	33
49	Hazards in Motion: Development of Mobile Geofences for Use in Logging Safety. Sensors, 2017, 17, 822.	2.1	32
50	A Case for Developing Place-Based Fire Management Strategies from Traditional Ecological Knowledge. Ecology and Society, 2012, 17, .	1.0	31
51	The Development of Near Real-Time Biomass and Cover Estimates for Adaptive Rangeland Management Using Landsat 7 and Landsat 8 Surface Reflectance Products. Remote Sensing, 2018, 10, 1057.	1.8	29
52	Landscape-scale quantification of fire-induced change in canopy cover following mountain pine beetle outbreak and timber harvest. Forest Ecology and Management, 2017, 391, 164-175.	1.4	27
53	Fire intensity impacts on post-fire temperate coniferous forest net primary productivity. Biogeosciences, 2018, 15, 1173-1183.	1.3	27
54	Mapping Wildfire Burn Severity in the Arctic Tundra from Downsampled MODIS Data. Arctic, Antarctic, and Alpine Research, 2013, 45, 64-76.	0.4	25

#	Article	IF	CITATIONS
55	Beyond wildfire: perspectives of climate, managed fire and policy in the USA. International Journal of Wildland Fire, 2010, 19, 364.	1.0	23
56	Lidar provides novel insights into the effect of pixel size and grazing intensity on measures of spatial heterogeneity in a native bunchgrass ecosystem. Remote Sensing of Environment, 2019, 235, 111432.	4.6	21
57	Short―and longâ€ŧerm effects of fire on stem hydraulics in <scp><i>Pinus ponderosa</i></scp> saplings. Plant, Cell and Environment, 2021, 44, 696-705.	2.8	20
58	Large-diameter trees dominate snag and surface biomass following reintroduced fire. Ecological Processes, 2020, 9, .	1.6	20
59	Is proportion burned severely related to daily area burned?. Environmental Research Letters, 2014, 9, 064011.	2.2	19
60	Assessing Landscape Vulnerability to Wildfire in the USA. Current Forestry Reports, 2016, 2, 201-213.	3.4	18
61	Biomimicry can help humans to coexist sustainably with fire. Nature Ecology and Evolution, 2018, 2, 1827-1829.	3.4	18
62	Quantifying livestock effects on bunchgrass vegetation with Landsat ETM+ data across a single growing season. International Journal of Remote Sensing, 2016, 37, 150-175.	1.3	17
63	Effects of wildfire on sea otter (<i>Enhydra lutris</i>) gene transcript profiles. Marine Mammal Science, 2015, 31, 191-210.	0.9	16
64	Modeling the impacts of wildfire on runoff and pollutant transport from coastal watersheds to the nearshore environment. Journal of Environmental Management, 2015, 151, 113-123.	3.8	16
65	Determination of burn severity models ranging from regional to national scales for the conterminous United States. Remote Sensing of Environment, 2021, 263, 112569.	4.6	16
66	Evaluating the Mid-Infrared Bi-spectral Index for improved assessment of low-severity fire effects in a conifer forest. International Journal of Wildland Fire, 2018, 27, 407.	1.0	15
67	Planning for Idaho's waterscapes: A review of historical drivers and outlook for the next 50 years. Environmental Science and Policy, 2019, 94, 191-201.	2.4	15
68	The Survival of Pinus ponderosa Saplings Subjected to Increasing Levels of Fire Behavior and Impacts on Post-Fire Growth. Fire, 2019, 2, 23.	1.2	14
69	Fires that matter: reconceptualizing fire risk to include interactions between humans and the natural environment. Environmental Research Letters, 2022, 17, 045014.	2.2	14
70	The Fire and Tree Mortality Database, for empirical modeling of individual tree mortality after fire. Scientific Data, 2020, 7, 194.	2.4	13
71	Drought Increases Vulnerability of Pinus ponderosa Saplings to Fire-Induced Mortality. Fire, 2020, 3, 56.	1.2	13
72	The state of wildfire and bushfire science: Temporal trends, research divisions and knowledge gaps. Safety Science, 2022, 153, 105797.	2.6	12

#	Article	IF	Citations
73	Accounting for disturbance history in models: using remote sensing to constrain carbon and nitrogen pool spinâ€up. Ecological Applications, 2018, 28, 1197-1214.	1.8	11
74	How does water yield respond to mountain pine beetle infestation in a semiarid forest?. Hydrology and Earth System Sciences, 2021, 25, 4681-4699.	1.9	11
75	Wildfires: count lives and homes, not hectares burnt. Nature, 2020, 586, 9-9.	13.7	11
76	Wildfire Consumption and Interannual Impacts by Land Cover in Alaskan Boreal Forest. Fire Ecology, 2012, 8, 98-114.	1.1	9
77	An experimental assessment of the impact of drought and fire on western larch injury, mortality and recovery. International Journal of Wildland Fire, 2018, 27, 490.	1.0	9
78	Forest Carbon Emission Sources Are Not Equal: Putting Fire, Harvest, and Fossil Fuel Emissions in Context. Frontiers in Forests and Global Change, 2022, 5, .	1.0	9
79	Developing Theoretical Marine Habitat Suitability Models from Remotely-Sensed Data and Traditional Ecological Knowledge. Remote Sensing, 2015, 7, 11863-11886.	1.8	8
80	Characterizing persistent unburned islands within the Inland Northwest USA. Fire Ecology, 2019, 15, .	1.1	8
81	Projecting Future Fire Regimes in a Semiarid Watershed of the Inland Northwestern United States: Interactions Among Climate Change, Vegetation Productivity, and Fuel Dynamics. Earth's Future, 2022, 10, .	2.4	7
82	Effects of an introductory geography course on student perceptions of geography at the University of Idaho. Journal of Geography in Higher Education, 2013, 37, 515-535.	1.4	6
83	An Assessment of Fire Refugia Importance Criteria Ranked by Land Managers. Fire, 2019, 2, 27.	1.2	5
84	Recognizing Women Leaders in Fire Science. Fire, 2018, 1, 30.	1.2	4
85	Development of a Historical Multi-Year Land Cover Classification Incorporating Wildfire Effects. Land, 2014, 3, 1214-1231.	1.2	3
86	Bushfires in Tasmania, Australia: An Introduction. Fire, 2022, 5, 33.	1.2	1