Yuichi Tada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1001823/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparative analysis of various root active promoters by evaluation of GUS expression in transgenic Arabidopsis. Plant Biotechnology, 2021, 38, 443-448.	0.5	3
2	Na+ Transporter SvHKT1;1 from a Halophytic Turf Grass Is Specifically Upregulated by High Na+ Concentration and Regulates Shoot Na+ Concentration. International Journal of Molecular Sciences, 2020, 21, 6100.	1.8	12
3	Comparative Functional Analysis of Class II Potassium Transporters, SvHKT2;1, SvHKT2;2, and HvHKT2;1, on Ionic Transport and Salt Tolerance in Transgenic Arabidopsis. Plants, 2020, 9, 786.	1.6	8
4	Transcriptomic analysis of Aegilops tauschii during long-term salinity stress. Functional and Integrative Genomics, 2019, 19, 13-28.	1.4	30
5	The HKT Transporter Gene from Arabidopsis, AtHKT1;1, Is Dominantly Expressed in Shoot Vascular Tissue and Root Tips and Is Mild Salt Stress-Responsive. Plants, 2019, 8, 204.	1.6	13
6	High-Affinity K+ Transporters from a Halophyte, <i>Sporobolus virginicus</i> , Mediate Both K+ and Na+ Transport in Transgenic Arabidopsis, <i>X. laevis</i> Oocytes and Yeast. Plant and Cell Physiology, 2019, 60, 176-187.	1.5	12
7	Functional screening of salt tolerance genes from a halophyte Sporobolus virginicus and transcriptomic and metabolomic analysis of salt tolerant plants expressing glycine-rich RNA-binding protein. Plant Science, 2019, 278, 54-63.	1.7	18
8	Comparative whole genome re-sequencing analysis in upland New Rice for Africa: insights into the breeding history and respective genome compositions. Rice, 2018, 11, 33.	1.7	9
9	Development of simple sequence repeat markers in the halophytic turf grass Sporobolus virginicus and transferable genotyping across multiple grass genera/species/genotypes. Euphytica, 2017, 213, 1.	0.6	5
10	Plant signaling networks involving Ca2+ and Rboh/Nox-mediated ROS production under salinity stress. Frontiers in Plant Science, 2015, 6, 427.	1.7	172
11	Comprehensive analysis of transcriptome response to salinity stress in the halophytic turf grass Sporobolus virginicus. Frontiers in Plant Science, 2015, 6, 241.	1.7	70
12	Involvement of elevated proline accumulation in enhanced osmotic stress tolerance in <i>Arabidopsis</i> conferred by chimeric repressor gene silencing technology. Plant Signaling and Behavior, 2014, 9, e28211.	1.2	6
13	Growth and physiological adaptation of whole plants and cultured cells from a halophyte turf grass under salt stress. AoB PLANTS, 2014, 6, plu041-plu041.	1.2	27
14	Identification of Chimeric Repressors that Confer Salt and Osmotic Stress Tolerance in Arabidopsis. Plants, 2013, 2, 769-785.	1.6	16
15	Glutathione-dependent formaldehyde dehydrogenase from golden pothos (Epipremnum aureum) and the production of formaldehyde detoxifying plants. Plant Biotechnology, 2011, 28, 373-378.	0.5	17
16	Expression of Bruguiera gymnorhiza BgARP1 enhances salt tolerance in transgenic Arabidopsis plants. Euphytica, 2011, 177, 383-392.	0.6	10
17	Isolation and characterization of formaldehyde-responsive genes from golden pothos (Epipremnum) Tj ETQq1	1 0.784314	⊦rg₿T /Overlo
18	Transcriptome Profiling of the Mangrove Plant <i>Bruguiera gymnorhiza</i> and Identification of Salt Tolerance Genes by <i>Agrobacterium</i> Functional Screening. Bioscience, Biotechnology and Biochemistry, 2009, 73, 304-310.	0.6	27

Υυιςμι Τάδα

#	Article	IF	CITATIONS
19	Proteomic Analysis of Salt-Responsive Proteins in the Mangrove Plant, Bruguiera gymnorhiza. Plant and Cell Physiology, 2009, 50, 439-446.	1.5	71
20	Identification of salt tolerance genes from the mangrove plant Bruguiera gymnorhiza using Agrobacterium functional screening. Plant Science, 2009, 176, 272-278.	1.7	36
21	Transcriptional and physiological study of the response of Burma mangrove (Bruguiera gymnorhiza) to salt and osmotic stress. Plant Molecular Biology, 2008, 68, 119-129.	2.0	41
22	Genetic transformation of golden pothos (Epipremnum aureum) mediated by Agrobacterium tumefaciens. Plant Cell, Tissue and Organ Culture, 2008, 95, 305-311.	1.2	5
23	Effects of Rf-1, Rf-3 and Rf-6(t) Genes on Fertility Restoration in Rice (Oryza sativa L.) with WA- and BT-type Cytoplasmic Male Sterility. Breeding Science, 2007, 57, 223-229.	0.9	4
24	Rice SPK, a Calmodulin-Like Domain Protein Kinase, Is Required for Storage Product Accumulation during Seed Development. Plant Cell, 2002, 14, 619-628.	3.1	154
25	Chemical induction of disease resistance in rice is correlated with the expression of a gene encoding a nucleotide binding site and leucine-rich repeats. Plant Molecular Biology, 1999, 40, 847-855.	2.0	72
26	Reduction of 14-16 kDa allergenic proteins in transgenic rice plants by antisense gene. FEBS Letters, 1996, 391, 341-345.	1.3	142
27	Expression of rice OSH1 gene is localized in developing vascular strands and its ectopic expression in transgenic rice causes altered morphology of leaf. Plant Cell Reports, 1995, 14, 555-9.	2.8	16
28	The Promoter of a Pine Photosynthetic Gene Allows Expression of a Î ² -Glucuronidase Reporter Gene in Transgenic Rice Plants in a Light-Independent but Tissue-Specific Manner. Plant and Cell Physiology, 1994, 35, 773-778.	1.5	17
29	Molecular Analysis of Genes Involved in Rice Grain Starch Synthesis: Structure of a Seed-Development Specific Protein Kinase. , 1992, , 923-926.		0
30	Rapid isolation of a rice waxy sequence: a simple PCR method for the analysis of recombinant plasmids from intact Escherichia coli cells. Gene, 1991, 98, 243-248.	1.0	10
31	A modified β-glucuronidase gene: Sensitive detection of plant promoter activities in suspension-cultured cells of tobacco and rice. Plant Molecular Biology Reporter, 1991, 9, 333-339. 	1.0	17
32	Efficient gene introduction into rice by electroporation and analysis of transgenic plants: use of electroporation buffer lacking chloride ions. Theoretical and Applied Genetics, 1990, 80, 475-480.	1.8	136