

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10016895/publications.pdf Version: 2024-02-01

XILLANC

#	Article	IF	CITATIONS
1	Opioid receptor signaling suppresses leukemia through both catalytic and non-catalytic functions of TET2. Cell Reports, 2022, 38, 110253.	6.4	6
2	Protocol to establish a stable MLL-AF9_AML mouse model. STAR Protocols, 2022, 3, 101559.	1.2	1
3	Anti-Tumor Effects of BDH1 in Acute Myeloid Leukemia. Frontiers in Oncology, 2021, 11, 694594.	2.8	6
4	miR-550-1 functions as a tumor suppressor in acute myeloid leukemia via the hippo signaling pathway. International Journal of Biological Sciences, 2020, 16, 2853-2867.	6.4	11
5	EGR1 recruits TET1 to shape the brain methylome during development and upon neuronal activity. Nature Communications, 2019, 10, 3892.	12.8	95
6	METTL14 Inhibits Hematopoietic Stem/Progenitor Differentiation and Promotes Leukemogenesis via mRNA m6A Modification. Cell Stem Cell, 2018, 22, 191-205.e9.	11.1	749
7	R-2HG Exhibits Anti-tumor Activity by Targeting FTO/m6A/MYC/CEBPA Signaling. Cell, 2018, 172, 90-105.e23.	28.9	794
8	N6-Methyladenosine Modification Regulates Cell Metabolism in Acute Myeloid Leukemia. Blood, 2018, 132, 880-880.	1.4	0
9	ALOX5 exhibits anti-tumor and drug-sensitizing effects in MLL-rearranged leukemia. Scientific Reports, 2017, 7, 1853.	3.3	26
10	Targeted inhibition of STAT/TET1 axis as a therapeutic strategy for acute myeloid leukemia. Nature Communications, 2017, 8, 2099.	12.8	45
11	Targeted Inhibition of STAT/TET1 Axis As a Potent Therapeutic Strategy for Acute Myeloid Leukemia. Blood, 2017, 130, 857-857.	1.4	1
12	miR-22 has a potent anti-tumour role with therapeutic potential in acute myeloid leukaemia. Nature Communications, 2016, 7, 11452.	12.8	113
13	Eradication of Acute Myeloid Leukemia with FLT3 Ligand–Targeted miR-150 Nanoparticles. Cancer Research, 2016, 76, 4470-4480.	0.9	48
14	The N6-Adenine Methyltransferase METTL14 Plays an Oncogenic Role in Acute Myeloid Leukemia. Blood, 2016, 128, 1536-1536.	1.4	1
15	Alox5 Functions As Both Tumor Suppressor and Drug Sensitizer in AML. Blood, 2016, 128, 2851-2851.	1.4	0
16	Overexpression and Knockout of Mir-126 Both Promote Leukemogenesis through Targeting Distinct Gene Signaling. Blood, 2015, 126, 3667-3667.	1.4	1
17	<i>TET1</i> plays an essential oncogenic role in <i>MLL</i> -rearranged leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11994-11999.	7.1	185
18	MLL-Rearranged Acute Myeloid Leukemias Drive Expression Of Mir-9, a Critical Oncogene In Leukemogenesis. Blood, 2013, 122, 3740-3740.	1.4	0

Xi Jiang

#	Article	IF	CITATIONS
19	miR-196b directly targets both HOXA9/MEIS1 oncogenes and FAS tumour suppressor in MLL-rearranged leukaemia. Nature Communications, 2012, 3, 688.	12.8	138
20	miR-495 is a tumor-suppressor microRNA down-regulated in <i>MLL</i> -rearranged leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19397-19402.	7.1	109
21	Blockade of miR-150 Maturation by MLL-Fusion/MYC/LIN-28 Is Required for MLL-Associated Leukemia. Cancer Cell, 2012, 22, 524-535.	16.8	154
22	Up-regulation of a HOXA-PBX3 homeobox-gene signature following down-regulation of miR-181 is associated with adverse prognosis in patients with cytogenetically abnormal AML. Blood, 2012, 119, 2314-2324.	1.4	145
23	Blockade of Mir-150 Maturation by MLL-Fusion/MYC/Lin-28 Is Required for MLL-Associated Leukemia. Blood, 2012, 120, 3499-3499.	1.4	1
24	The HOXA/PBX3 Pathway Is an Attractive Therapeutic Target in MLL-Rearranged Acute Leukemia. Blood, 2012, 120, 3522-3522.	1.4	0
25	MLL-Associated Leukemias Drive Expression of MiR-9, Required for Tumorigenesis. Blood, 2012, 120, 525-525.	1.4	0
26	Repression of Mir-495, a Microrna Associated with Favorable Outcome of Acute Myeloid Leukemia Patients, Is Required for the MLL-Associated Leukemogenesis,. Blood, 2011, 118, 3462-3462.	1.4	0
27	Activation of a Mir-181-Targeting HOXA-PBX3 Homeobox Gene Signature Is Associated with Adverse Prognosis of Cytogenetically Abnormal Acute Myeloid Leukemia. Blood, 2011, 118, 236-236.	1.4	0