Zhong-Li Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10016425/publications.pdf

Version: 2024-02-01

61984 91884 12,108 66 43 69 citations h-index g-index papers 69 69 69 14449 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Tailoring the Surface and Interface Structures of Copperâ€Based Catalysts for Electrochemical Reduction of CO ₂ to Ethylene and Ethanol. Small, 2022, 18, e2107450.	10.0	87
2	Ru ions enhancing the interface bonding between the Pt nanoparticle catalyst and perovskite support for super anti-sintering performance. Journal of Materials Chemistry A, 2022, 10, 8227-8237.	10.3	2
3	Morphologically controlled cobalt oxide nanoparticles for efficient oxygen evolution reaction. Journal of Colloid and Interface Science, 2021, 582, 322-332.	9.4	51
4	Tailored Catalytic Nanoframes from Metal–Organic Frameworks by Anisotropic Surface Modification and Etching for the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2021, 60, 4747-4755.	13.8	92
5	Tailored Catalytic Nanoframes from Metal–Organic Frameworks by Anisotropic Surface Modification and Etching for the Hydrogen Evolution Reaction. Angewandte Chemie, 2021, 133, 4797-4805.	2.0	18
6	Ti ³⁺ Tuning the Ratio of Cu ⁺ /Cu ⁰ in the Ultrafine Cu Nanoparticles for Boosting the Hydrogenation Reaction. Small, 2021, 17, e2008052.	10.0	25
7	Optimizing Electron Densities of Niâ€N Complexes by Hybrid Coordination for Efficient Electrocatalytic CO ₂ Reduction. ChemSusChem, 2020, 13, 929-937.	6.8	76
8	Hierarchical Tubular Architecture Constructed by Vertically Aligned CoS ₂ â€MoS ₂ Nanosheets for Hydrogen Evolution Electrocatalysis. Chemistry - A European Journal, 2020, 26, 6195-6204.	3.3	18
9	Tailored synthesis of Zn–N co-doped porous MoC nanosheets towards efficient hydrogen evolution. Nanoscale, 2019, 11, 1700-1709.	5.6	39
10	Metal organic framework derived nickel phosphide/graphitic carbon hybrid for electrochemical hydrogen generation reaction. Journal of the Taiwan Institute of Chemical Engineers, 2019, 96, 634-638.	5 . 3	27
11	Pore-tuning to boost the electrocatalytic activity of polymeric micelle-templated mesoporous Pd nanoparticles. Chemical Science, 2019, 10, 4054-4061.	7.4	175
12	Nanoarchitectonics for Transitionâ€Metalâ€Sulfideâ€Based Electrocatalysts for Water Splitting. Advanced Materials, 2019, 31, e1807134.	21.0	998
13	Hollow Functional Materials Derived from Metal–Organic Frameworks: Synthetic Strategies, Conversion Mechanisms, and Electrochemical Applications. Advanced Materials, 2019, 31, e1804903.	21.0	370
14	Elaborately assembled core-shell structured metal sulfides as a bifunctional catalyst for highly efficient electrochemical overall water splitting. Nano Energy, 2018, 47, 494-502.	16.0	383
15	Spatially Confined Assembly of Monodisperse Ruthenium Nanoclusters in a Hierarchically Ordered Carbon Electrode for Efficient Hydrogen Evolution. Angewandte Chemie, 2018, 130, 5950-5954.	2.0	12
16	Spatially Confined Assembly of Monodisperse Ruthenium Nanoclusters in a Hierarchically Ordered Carbon Electrode for Efficient Hydrogen Evolution. Angewandte Chemie - International Edition, 2018, 57, 5848-5852.	13.8	135
17	Assembly of Hollow Carbon Nanospheres on Graphene Nanosheets and Creation of Iron–Nitrogen-Doped Porous Carbon for Oxygen Reduction. ACS Nano, 2018, 12, 5674-5683.	14.6	277
18	Facile Synthesis of Palladiumâ€Nanoparticleâ€Embedded Nâ€Doped Carbon Fibers for Electrochemical Sensing. ChemPlusChem, 2018, 83, 401-406.	2.8	8

#	Article	lF	CITATIONS
19	Hollow Porous Heterometallic Phosphide Nanocubes for Enhanced Electrochemical Water Splitting. Small, 2018, 14, e1802442.	10.0	166
20	Electrochemically ⟨i⟩in situ⟨/i⟩ controllable assembly of hierarchically-ordered and integrated inorganic–carbon hybrids for efficient hydrogen evolution. Materials Horizons, 2018, 5, 1194-1203.	12.2	31
21	Subâ€50 nm Iron–Nitrogenâ€Doped Hollow Carbon Sphereâ€Encapsulated Iron Carbide Nanoparticles as Efficient Oxygen Reduction Catalysts. Advanced Science, 2018, 5, 1800120.	11.2	187
22	Mesoporous Ni–Fe oxide multi-composite hollow nanocages for efficient electrocatalytic water oxidation reactions. Journal of Materials Chemistry A, 2017, 5, 4320-4324.	10.3	108
23	One-Pot Synthesis of Zeolitic Imidazolate Framework 67-Derived Hollow Co ₃ S ₄ @MoS ₂ Heterostructures as Efficient Bifunctional Catalysts. Chemistry of Materials, 2017, 29, 5566-5573.	6.7	510
24	Perfectly ordered mesoporous iron-nitrogen doped carbon as highly efficient catalyst for oxygen reduction reaction in both alkaline and acidic electrolytes. Nano Energy, 2017, 36, 286-294.	16.0	183
25	Assembly of hollow mesoporous nanoarchitectures composed of ultrafine Mo ₂ C nanoparticles on N-doped carbon nanosheets for efficient electrocatalytic reduction of oxygen. Materials Horizons, 2017, 4, 1171-1177.	12.2	167
26	Mesoporous Semimetallic Conductors: Structural and Electronic Properties of Cobalt Phosphide Systems. Angewandte Chemie - International Edition, 2017, 56, 13508-13512.	13.8	36
27	Mesoporous Semimetallic Conductors: Structural and Electronic Properties of Cobalt Phosphide Systems. Angewandte Chemie, 2017, 129, 13693-13697.	2.0	16
28	First Synthesis of Continuous Mesoporous Copper Films with Uniformly Sized Pores by Electrochemical Soft Templating. Angewandte Chemie, 2016, 128, 12938-12942.	2.0	15
29	Reactive Multifunctional Templateâ€Induced Preparation of Feâ€Nâ€Doped Mesoporous Carbon Microspheres Towards Highly Efficient Electrocatalysts for Oxygen Reduction. Advanced Materials, 2016, 28, 7948-7955.	21.0	342
30	Synthesis of Cobalt Sulfide/Sulfur Doped Carbon Nanocomposites with Efficient Catalytic Activity in the Oxygen Evolution Reaction. Chemistry - A European Journal, 2016, 22, 18259-18264.	3.3	43
31	Nanostructured nonprecious metal catalysts for electrochemical reduction of carbon dioxide. Nano Today, 2016, 11, 373-391.	11.9	200
32	Integrated Three-Dimensional Carbon Paper/Carbon Tubes/Cobalt-Sulfide Sheets as an Efficient Electrode for Overall Water Splitting. ACS Nano, 2016, 10, 2342-2348.	14.6	575
33	Synergistic Effect between Metal–Nitrogen–Carbon Sheets and NiO Nanoparticles for Enhanced Electrochemical Waterâ€Oxidation Performance. Angewandte Chemie - International Edition, 2015, 54, 10530-10534.	13.8	301
34	Gelatin-derived sustainable carbon-based functional materials for energy conversion and storage with controllability of structure and component. Science Advances, 2015, 1, e1400035.	10.3	144
35	C and N Hybrid Coordination Derived Co–C–N Complex as a Highly Efficient Electrocatalyst for Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2015, 137, 15070-15073.	13.7	377
36	Oxygen electrocatalysts in metal–air batteries: from aqueous to nonaqueous electrolytes. Chemical Society Reviews, 2014, 43, 7746-7786.	38.1	1,264

3

#	Article	IF	Citations
37	3D ordered macroporous LaFeO3 as efficient electrocatalyst for Li–O2 batteries with enhanced rate capability and cyclic performance. Energy and Environmental Science, 2014, 7, 2213.	30.8	339
38	Electrostatic Induced Stretch Growth of Homogeneous \hat{I}^2 -Ni(OH)2 on Graphene with Enhanced High-Rate Cycling for Supercapacitors. Scientific Reports, 2014, 4, 3669.	3.3	222
39	Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium-oxygen batteries. Nature Communications, 2013, 4, 2438.	12.8	519
40	The development and challenges of rechargeable non-aqueous lithium–air batteries. International Journal of Smart and Nano Materials, 2013, 4, 27-46.	4.2	30
41	<i>In Situ</i> Fabrication of Porous Graphene Electrodes for High-Performance Energy Storage. ACS Nano, 2013, 7, 2422-2430.	14.6	394
42	Synthesis of Perovskiteâ€Based Porous La _{0.75} Sr _{0.25} MnO ₃ Nanotubes as a Highly Efficient Electrocatalyst for Rechargeable Lithium–Oxygen Batteries. Angewandte Chemie - International Edition, 2013, 52, 3887-3890.	13.8	482
43	Homogeneous CoO on Graphene for Binderâ€Free and Ultralongâ€Life Lithium Ion Batteries. Advanced Functional Materials, 2013, 23, 4345-4353.	14.9	333
44	Batteries: Homogeneous CoO on Graphene for Binderâ€Free and Ultralongâ€Life Lithium Ion Batteries (Adv. Funct. Mater. 35/2013). Advanced Functional Materials, 2013, 23, 4274-4274.	14.9	17
45	A stable sulfone based electrolyte for high performance rechargeable Li–O2 batteries. Chemical Communications, 2012, 48, 11674.	4.1	99
46	Lithium Ion Batteries: Graphene Oxide Gelâ€Derived, Freeâ€Standing, Hierarchically Porous Carbon for Highâ€Capacity and Highâ€Rate Rechargeable Liâ€O ₂ Batteries (Adv. Funct. Mater. 17/2012). Advanced Functional Materials, 2012, 22, 3745-3745.	14.9	2
47	High aspect ratio γ-MnOOH nanowires for high performance rechargeable nonaqueous lithium–oxygen batteries. Chemical Communications, 2012, 48, 7598.	4.1	109
48	Facile, mild and fast thermal-decomposition reduction of graphene oxide in air and its application in high-performance lithium batteries. Chemical Communications, 2012, 48, 976-978.	4.1	240
49	Rhodium–nickel nanoparticles grown on graphene as highly efficient catalyst for complete decomposition of hydrous hydrazine at room temperature for chemical hydrogen storage. Energy and Environmental Science, 2012, 5, 6885.	30.8	214
50	Facile and controllable one-pot synthesis of an ordered nanostructure of Co(OH)2 nanosheets and their modification by oxidation for high-performance lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 3764.	6.7	94
51	α-MnO2 hollow clews for rechargeable Li-air batteries with improved cyclability. Science Bulletin, 2012, 57, 4210-4214.	1.7	19
52	One-step and rapid synthesis of "clean―and monodisperse dendritic Pt nanoparticles and their high performance toward methanol oxidation and p-nitrophenol reduction. Nanoscale, 2012, 4, 1549.	5.6	130
53	Graphene Oxide Gelâ€Derived, Freeâ€Standing, Hierarchically Porous Carbon for Highâ€Capacity and Highâ€Rate Rechargeable Liâ€O ₂ Batteries. Advanced Functional Materials, 2012, 22, 3699-3705.	14.9	390
54	Facile and Lowâ€Cost Synthesis of Largeâ€Area Pure V ₂ O ₅ Nanosheets for Highâ€Capacity and Highâ€Rate Lithium Storage over a Wide Temperature Range. ChemPlusChem, 2012, 77, 124-128.	2.8	80

#	Article	IF	CITATIONS
55	Novel DMSO-based electrolyte for high performance rechargeable Li–O2 batteries. Chemical Communications, 2012, 48, 6948.	4.1	281
56	A facile co-gelation route to synthesize FeCo/carbon nanocomposites and their application as magnetically separable adsorber. Journal of Alloys and Compounds, 2011, 509, 585-589.	5.5	10
57	Co-gelation synthesis of porous graphitic carbons with high surface area and their applications. Carbon, 2011, 49, 161-169.	10.3	97
58	A new kind of mesoporous Fe7Co3/carbon nanocomposite and its application as magnetically separable adsorber. Materials Letters, 2010, 64, 1219-1221.	2.6	21
59	Simple synthesis of magnetic mesoporous FeNi/carbon composites with a large capacity for the immobilization of biomolecules. Carbon, 2010, 48, 3182-3189.	10.3	55
60	Facile Synthesis of Porous Fe7Co3/Carbon Nanocomposites and Their Applications as Magnetically Separable Adsorber and Catalyst Support. Langmuir, 2010, 26, 10135-10140.	3.5	19
61	Mn Valence, Magnetic, and Electrical Properties of LaMnO $<$ sub $>3+\hat{l}'sub> Nanofibers by Electrospinning. ACS Applied Materials & Samp; Interfaces, 2010, 2, 2689-2693.$	8.0	23
62	Preparation of One-Dimensional CoFe ₂ O ₄ Nanostructures and Their Magnetic Properties. Journal of Physical Chemistry C, 2008, 112, 15171-15175.	3.1	126
63	Preparation of Ferrite MFe ₂ O ₄ (M = Co, Ni) Ribbons with Nanoporous Structure and Their Magnetic Properties. Journal of Physical Chemistry B, 2008, 112, 11292-11297.	2.6	124
64	Structures and Physical Properties of <i>n</i> = 3 Ruddlesden–Popper Compounds Ca ₄ Mn _{3â"<i>x</i> sub>Nb<i>sub>x</i>} color="block"> sub>10 (0 ≤i>x a‰®0.2). Chemistry of Materials, 2008, 20, 1988-1996.	6.7	17
65	Tunable Synthesis, Growth Mechanism, and Magnetic Properties of La0.5Ba0.5MnO3. Crystal Growth and Design, 2007, 7, 2568-2575.	3.0	29
66	The magnetic and structural properties of hydrothermal-synthesized single-crystal Sn1â^'xFexO2 nanograins. Journal of Magnetism and Magnetic Materials, 2007, 317, 1-7.	2.3	25