Kenichi Goushi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10013467/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recycling of Triplets into Singlets for Highâ€Performance Organic Lasers. Advanced Optical Materials, 2022, 10, 2101302.	3.6	16
2	Numerical Study of Triplet Dynamics in Organic Semiconductors Aimed for the Active Utilization of Triplets by TADF under Continuous-Wave Lasing. Journal of Physical Chemistry Letters, 2022, 13, 1323-1329.	2.1	6
3	Highly Efficient Deepâ€Blue Organic Lightâ€Emitting Diodes Based on Rational Molecular Design and Device Engineering. Advanced Functional Materials, 2022, 32, .	7.8	27
4	Carbazole-2-carbonitrile as an acceptor in deep-blue thermally activated delayed fluorescence emitters for narrowing charge-transfer emissions. Chemical Science, 2022, 13, 7821-7828.	3.7	8
5	Tailorâ€Made Multiâ€Resonance Terminal Emitters toward Narrowband, Highâ€Efficiency, and Stable Hyperfluorescence Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2022, 10, .	3.6	21
6	Realizing Nearâ€Infrared Laser Dyes through a Shift inÂExcitedâ€State Absorption. Advanced Optical Materials, 2021, 9, 2001947.	3.6	19
7	Markedly Improved Performance of Optically Pumped Organic Lasers with Two-Dimensional Distributed-Feedback Gratings. ACS Photonics, 2021, 8, 1324-1334.	3.2	17
8	Synthesis and Characterization of 5,5â \in 2-Bitetracene. Chemistry Letters, 2021, 50, 800-803.	0.7	1
9	Triplet-triplet Upconversion Involving Spin-orbit Interaction in Organic Light-emitting Diodes. Journal of the Institute of Electrical Engineers of Japan, 2021, 141, 277-279.	0.0	Ο
10	Hot exciplexes in U-shaped TADF molecules with emission from locally excited states. Nature Communications, 2021, 12, 6179.	5.8	25
11	Triplet management for efficient perovskite light-emitting diodes. Nature Photonics, 2020, 14, 70-75.	15.6	190
12	Intersystem Crossing Rate in Thermally Activated Delayed Fluorescence Emitters. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900616.	0.8	13
13	Observation of Nonradiative Deactivation Behavior from Singlet and Triplet States of Thermally Activated Delayed Fluorescence Emitters in Solution. Journal of Physical Chemistry Letters, 2020, 11, 562-566.	2.1	36
14	Suppression of external quantum efficiency rolloff in organic light emitting diodes by scavenging triplet excitons. Nature Communications, 2020, 11, 4926.	5.8	46
15	Organic Laser Dyes: An Organic Laser Dye having a Small Singletâ€īriplet Energy Gap Makes the Selection of a Host Material Easier (Adv. Funct. Mater. 30/2020). Advanced Functional Materials, 2020, 30, 2070204.	7.8	Ο
16	An Organic Laser Dye having a Small Singletâ€Triplet Energy Gap Makes the Selection of a Host Material Easier. Advanced Functional Materials, 2020, 30, 2001078.	7.8	26
17	Physics and Design Principles of OLED Devices. , 2020, , 1-73.		2
18	Indication of current-injection lasing from an organic semiconductor. Applied Physics Express, 2019, 12, 061010.	1.1	198

Kenichi Goushi

#	Article	IF	CITATIONS
19	Triplet–triplet upconversion enhanced by spin–orbit coupling in organic light-emitting diodes. Nature Communications, 2019, 10, 5283.	5.8	111
20	Distributed Feedback Lasers and Light-Emitting Diodes Using 1-Naphthylmethylamnonium Low-Dimensional Perovskite. ACS Photonics, 2019, 6, 460-466.	3.2	55
21	Observation of spontaneous orientation polarization in evaporated films of organic light-emitting diode materials. Organic Electronics, 2018, 58, 313-317.	1.4	50
22	Enhanced Electroluminescence from Organic Lightâ€Emitting Diodes with an Organic–Inorganic Perovskite Host Layer. Advanced Materials, 2018, 30, e1802662.	11.1	22
23	Triplet-triplet annihilation in a thermally activated delayed fluorescence emitter lightly doped in a host. Applied Physics Letters, 2018, 113, .	1.5	21
24	Emission properties of thermally activated delayed fluorescence emitters: analysis based on a four-level model considering a higher triplet excited state. Journal of Photonics for Energy, 2018, 8, 1.	0.8	7
25	Contributions of a Higher Triplet Excited State to the Emission Properties of a Thermally Activated Delayed-Fluorescence Emitter. Physical Review Applied, 2017, 7, .	1.5	45
26	Control of the Singlet–Triplet Energy Gap in a Thermally Activated Delayed Fluorescence Emitter by Using a Polar Host Matrix. Nanoscale Research Letters, 2017, 12, 268.	3.1	23
27	Toward continuous-wave operation of organic semiconductor lasers. Science Advances, 2017, 3, e1602570.	4.7	132
28	Electroluminescence: Confinement of Long-Lived Triplet Excitons in Organic Semiconducting Host-Guest Systems (Adv. Funct. Mater. 40/2017). Advanced Functional Materials, 2017, 27, .	7.8	0
29	Confinement of Longâ€Lived Triplet Excitons in Organic Semiconducting Host–Guest Systems. Advanced Functional Materials, 2017, 27, 1703902.	7.8	107
30	Quasi ontinuousâ€Wave Organic Thinâ€Film Distributed Feedback Laser. Advanced Optical Materials, 2016, 4, 834-839.	3.6	50
31	Charge carrier dynamics and degradation phenomena in organic light-emitting diodes doped by a thermally activated delayed fluorescence emitter. Organic Electronics, 2015, 17, 184-191.	1.4	43
32	Highly Efficient Thermally Activated Delayed Fluorescence Emitters with a Small Singlet–Triplet Energy Gap and Large Oscillator Strength. Chemistry Letters, 2015, 44, 360-362.	0.7	57
33	Organic Light-Emitting Diodes (OLEDs): Materials, Photophysics, and Device Physics. , 2015, , 43-73.		5
34	Comparison of transient state and steady state exciton–exciton annihilation rates based on Förster-type energy transfer. Japanese Journal of Applied Physics, 2015, 54, 071601.	0.8	8
35	Temperature dependence of photoluminescence properties in a thermally activated delayed fluorescence emitter. Applied Physics Letters, 2014, 104, .	1.5	48
36	Influence of host matrix on thermally-activated delayed fluorescence: Effects on emission lifetime, photoluminescence quantum yield, and device performance. Organic Electronics, 2014, 15, 2027-2037.	1.4	158

Kenichi Goushi

#	Article	IF	CITATIONS
37	Reduced amplified spontaneous emission threshold in organic semiconductor laser structure with relaxed roll-off characteristics under high current densities. Journal of Luminescence, 2013, 143, 754-758.	1.5	13
38	Efficient organic light-emitting diodes through up-conversion from triplet to singlet excited states of exciplexes. Applied Physics Letters, 2012, 101, .	1.5	239
39	Highly efficient organic light-emitting diodes from delayed fluorescence. Nature, 2012, 492, 234-238.	13.7	6,030
40	Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion. Nature Photonics, 2012, 6, 253-258.	15.6	1,355
41	Triplet Exciton Confinement in Green Organic Lightâ€Emitting Diodes Containing Luminescent Chargeâ€Transfer Cu(I) Complexes. Advanced Functional Materials, 2012, 22, 2327-2336.	7.8	279
42	Improvement of Electroluminescence Performance of Organic Lightâ€Emitting Diodes with a Liquidâ€Emitting Layer by Introduction of Electrolyte and a Holeâ€Blocking Layer. Advanced Materials, 2011, 23, 889-893.	11.1	100
43	Two-dimensional orientation control of organic semiconducting amorphous films by mechanical brushing. Applied Physics Letters, 2011, 99, .	1.5	5
44	Time-correlated single photon counting system and light-collection system for studying fluorescence emitters under high-vacuum conditions: Use of immersion objective and ionic liquid. Thin Solid Films, 2009, 518, 432-436.	0.8	7
45	Excitation Intensity Dependence of Power-Law Blinking Statistics in Nanocrystal Quantum Dots. Journal of Physical Chemistry C, 2009, 113, 20161-20168.	1.5	23
46	Organic Field Effect Transistor Using Pentacene Single Crystals Grown by a Liquid-Phase Crystallization Process. Langmuir, 2009, 25, 4861-4863.	1.6	18
47	Time-correlated single photon counting and optical measurement systems for studying single fluorescent emitters under high vacuum conditions. Thin Solid Films, 2008, 517, 1507-1511.	0.8	8
48	Charge-carrier injection characteristics at organic/organic heterojunction interfaces in organic light-emitting diodes. Chemical Physics Letters, 2007, 435, 327-330.	1.2	33
49	Spin-relaxation Process of Excited Triplet States of Ir(ppy)3. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2006, 19, 181-186.	0.1	2
50	100% phosphorescence quantum efficiency of Ir(III) complexes in organic semiconductor films. Applied Physics Letters, 2005, 86, 071104.	1.5	673
51	100% fluorescence efficiency of 4,4[sup Ê1]-bis[(N-carbazole)styryl]biphenyl in a solid film and the very low amplified spontaneous emission threshold. Applied Physics Letters, 2005, 86, 071110.	1.5	128
52	High Efficiency White Electrophosphorescence Mechanism with Two Phosphorescent Dopants. IEEJ Transactions on Fundamentals and Materials, 2004, 124, 414-420.	0.2	1
53	Unusual Phosphorescence Characteristics of Ir(ppy)3in a Solid Matrix at Low Temperatures. Japanese Journal of Applied Physics, 2004, 43, L937-L939.	0.8	58
54	Triplet exciton confinement and unconfinement by adjacent hole-transport layers. Journal of Applied Physics, 2004, 95, 7798-7802.	1.1	285

#	Article	IF	CITATIONS
55	Ultraviolet amplified spontaneous emission from thin films of 4,4′-bis(9-carbazolyl)-2,2′-biphenyl and the derivatives. Applied Physics Letters, 2004, 84, 2724-2726.	1.5	40
56	Phosphorescence Quantum Efficiency and Intermolecular Interaction of Iridium(III) Complexes in Co-Deposited Films with Organic Semiconducting Hosts. Materials Research Society Symposia Proceedings, 2004, 846, DD4.5.1.	0.1	0
57	High-Efficiency Organic Electrophosphorescent Diodes Using 1,3,5-Triazine Electron Transport Materials. Chemistry of Materials, 2004, 16, 1285-1291.	3.2	216