Sharon Z Herzka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1001134/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assessing connectivity of estuarine fishes based on stable isotope ratio analysis. Estuarine, Coastal and Shelf Science, 2005, 64, 58-69.	0.9	166
2	Changes in isotopic composition of red drum (<i>Sciaenops ocellatus</i>) larvae in response to dietary shifts: potential applications to settlement studies. Canadian Journal of Fisheries and Aquatic Sciences, 2000, 57, 137-147.	0.7	156
3	Tissue-specific isotope trophic discrimination factors and turnover rates in a marine elasmobranch: empirical and modeling results. Canadian Journal of Fisheries and Aquatic Sciences, 2012, 69, 551-564.	0.7	89
4	Seasonal photosynthetic patterns of the seagrass Thalassia testudinum in the western Gulf of Mexico. Marine Ecology - Progress Series, 1997, 152, 103-117.	0.9	75
5	Documenting the settlement history of individual fish larvae using stable isotope ratios: model development and validation. Journal of Experimental Marine Biology and Ecology, 2001, 265, 49-74.	0.7	54
6	The effect of substituting fishmeal with poultry by-product meal in diets for <i>Totoaba macdonaldi</i> juveniles. Aquaculture Research, 2016, 47, 1778-1789.	0.9	46
7	Tissue-specific isotope turnover and discrimination factors are affected by diet quality and lipid content in an omnivorous consumer. Journal of Experimental Marine Biology and Ecology, 2016, 479, 35-45.	0.7	44
8	Importance of Bahia Sebastian Vizcaino as a nursery area for white sharks (Carcharodon carcharias) in the Northeastern Pacific: A fishery dependent analysis. Fisheries Research, 2017, 188, 125-137.	0.9	39
9	Characterization of settlement patterns of red drum Sciaenops ocellatus larvae to estuarine nursery habitat: a stable isotope approach. Marine Ecology - Progress Series, 2002, 226, 143-156.	0.9	37
10	Tissueâ€specific stable isotope ratios of shortfin mako (<i>Isurus oxyrinchus</i>) and white (<i>Carcharodon carcharias</i>) sharks as indicators of sizeâ€based differences in foraging habitat and trophic level. Fisheries Oceanography, 2013, 22, 429-445.	0.9	36
11	Metazoan parasite infracommunities of the dusky flounder (Syacium papillosum) as bioindicators of environmental conditions in the continental shelf of the Yucatan Peninsula, Mexico. Parasites and Vectors, 2019, 12, 277.	1.0	35
12	Amino acidâ€specific δ ¹⁵ N trophic enrichment factors in fish fed with formulated diets varying in protein quantity and quality. Ecology and Evolution, 2018, 8, 9192-9217.	0.8	31
13	Light and carbon balance in the seagrass Thalassia testudinum  : evaluation of current production models. Marine Biology, 1998, 132, 711-721.	0.7	29
14	Protein Retention Assessment of Four Levels of Poultry By-Product Substitution of Fishmeal in Rainbow Trout (Oncorhynchus mykiss) Diets Using Stable Isotopes of Nitrogen (δ15N) as Natural Tracers. PLoS ONE, 2014, 9, e107523.	1.1	25
15	Tracking juvenile fish movement and nursery contribution within arid coastal embayments via otolith microchemistry. Marine Ecology - Progress Series, 2008, 361, 253-265.	0.9	25
16	Elements of time and place: manganese and barium in shark vertebrae reflect age and upwelling histories. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20181760.	1.2	22
17	Otolith-based growth estimates and insights into population structure of White Seabass, Atractoscion nobilis, off the Pacific coast of North America. Fisheries Research, 2015, 161, 374-383.	0.9	15
18	Yellowfin tuna (Thunnus albacares) foraging habitat and trophic position in the Gulf of Mexico based on intrinsic isotope tracers. PLoS ONE, 2021, 16, e0246082.	1.1	13

SHARON Z HERZKA

#	Article	IF	CITATIONS
19	A Comparison of Otolith Geochemistry and Stable Isotope Markers to Track Fish Movement: Describing Estuarine Ingress by Larval and Post-larval Halibut. Estuaries and Coasts, 2013, 36, 906-917.	1.0	12
20	Assessing the exposure risk of large pelagic fish to oil spills scenarios in the deep waters of the Gulf of Mexico. Marine Pollution Bulletin, 2022, 176, 113434.	2.3	12
21	Variation in isotopic trophic structure and fish diversity in mangrove systems subject to different levels of habitat modification in the Gulf of California, Mexico. Bulletin of Marine Science, 2016, 92, 399-422.	0.4	11
22	Larval fish assemblages of myctophids in the deep water region of the southern Gulf of Mexico linked to oceanographic conditions. Deep-Sea Research Part I: Oceanographic Research Papers, 2020, 155, 103181.	0.6	10
23	High quality diet improves lipid metabolic profile and breeding performance in the blue-footed booby, a long-lived seabird. PLoS ONE, 2018, 13, e0193136.	1.1	10
24	Natural variability in δ18O values of otoliths of young Pacific sardine captured in Mexican waters indicates subpopulation mixing within the first year of life. ICES Journal of Marine Science, 2008, 65, 174-190.	1.2	9
25	An interdisciplinary approach to evaluate the status of large-bodied Serranid fisheries: The case of Magdalena-Almejas Bay lagoon complex, Baja California Sur, Mexico. Ocean and Coastal Management, 2017, 145, 21-34.	2.0	9
26	A metaâ€enalysis of amino acid l̃′ ¹⁵ N trophic enrichment factors in fishes relative to nutritional and ecological drivers. Ecosphere, 2021, 12, e03570.	1.0	9
27	Environmental conditions drive zooplankton community structure in the epipelagic oceanic water of the southern Gulf of Mexico: A molecular approach. Molecular Ecology, 2022, 31, 546-561.	2.0	9
28	Flexibility in food resource allocation in parents and selectivity for offspring: variations in δ15N and δ13C values during breeding of the blue-footed booby. Marine Biology, 2017, 164, 1.	0.7	8
29	Connectivity of coastal and neritic fish larvae to the deep waters. Limnology and Oceanography, 2021, 66, 2423-2441.	1.6	8
30	Intraspecific density regulates positioning and feeding mode selection of the sand dollar Dendraster excentricus. Journal of Experimental Marine Biology and Ecology, 2007, 340, 169-183.	0.7	7
31	Fish Assemblages in Three Arid Mangrove Systems of the Gulf of California: Comparing Observations from 1980 and 2010. Bulletin of Marine Science, 2012, 88, 919-945.	0.4	7
32	Epipelagic zooplankton diversity in the deep water region of the Gulf of Mexico: a metabarcoding survey. ICES Journal of Marine Science, 2021, 78, 3317-3332.	1.2	7
33	Zooplankton summer composition in the southern Gulf of Mexico with emphasis on salp and hyperiid amphipod assemblages. Journal of the Marine Biological Association of the United Kingdom, 2020, 100, 665-680.	0.4	6
34	Deep-Water Warming in the Gulf of Mexico from 2003 to 2019. Journal of Physical Oceanography, 2021, 51, 1021-1035.	0.7	6
35	Stable isotope ratios as tracers of migration during the early life stages of marine fishes. Fisheries Science, 2002, 68, 182-185.	0.7	5
36	Evaluation of the physiological status of the Pacific sardine, Sardinops sagax caeruleus, acclimated to different thermal regimes based on selected blood parameters. Environmental Biology of Fishes, 2011, 91, 39-49.	0.4	5

SHARON Z HERZKA

#	Article	IF	CITATIONS
37	Diel, lunar and seasonal vertical migration in the deep western Gulf of Mexico evidenced from a long-term data series of acoustic backscatter. Progress in Oceanography, 2021, 195, 102562.	1.5	5
38	Nitrogen sources (NO3â^' vs N2 fixation) inferred from bulk Î′15N values of zooplankton from the deep water region of the Gulf of Mexico. Journal of Plankton Research, 2022, 44, 48-67.	0.8	5
39	Regulation of feeding mode by the sand dollar Dendraster excentricus in a shallow estuarine habitat. Journal of Experimental Marine Biology and Ecology, 2010, 383, 146-155.	0.7	4
40	Rearing conditions and habitat use of white seabass (Atractoscion nobilis) in the northeastern Pacific based on otolith isotopic composition. Estuarine, Coastal and Shelf Science, 2016, 170, 134-144.	0.9	4
41	Trophic ecology of Mexican Pacific harbor seal colonies using carbon and nitrogen stable isotopes. PLoS ONE, 2020, 15, e0225889.	1.1	3
42	Empowering fishers for Great White Shark stewardship: Reply to Madigan etÂal. 2021. Conservation Letters, 2021, 14, e12828.	2.8	3
43	Stable Isotope Analysis of Juvenile White Sharks Inside a Nursery Area Reveals Foraging in Demersal-Inshore Habitats and Trophic Overlap With Sympatric Sharks. Frontiers in Marine Science, 2021, 8, .	1.2	3
44	Short-term size-specific distribution and movement patterns of juvenile flatfish in a Pacific estuary derived through length-frequency and mark-recapture data. Ciencias Marinas, 2009, 35, 41-57.	0.4	3
45	Stable isotope ratios of egg albumen of three waterbird species nesting in the Colorado River Delta indicate differences in foraging ground and isotopic niche breadth. Aquatic Conservation: Marine and Freshwater Ecosystems, 2013, 23, 546-563.	0.9	2
46	Variability of fish larvae assemblages relative to mesoscale features in the deep water region of the southern Gulf of Mexico. Hydrobiologia, 2022, 849, 1471-1493.	1.0	2