Lars Wittler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10009933/publications.pdf Version: 2024-02-01

LADS WITTLED

#	Article	IF	CITATIONS
1	Disruptions of Topological Chromatin Domains Cause Pathogenic Rewiring of Gene-Enhancer Interactions. Cell, 2015, 161, 1012-1025.	28.9	1,725
2	Formation of new chromatin domains determines pathogenicity of genomic duplications. Nature, 2016, 538, 265-269.	27.8	582
3	Functional dissection of the Sox9–Kcnj2 locus identifies nonessential and instructive roles of TAD architecture. Nature Genetics, 2019, 51, 1263-1271.	21.4	223
4	Mouse embryonic stem cells self-organize into trunk-like structures with neural tube and somites. Science, 2020, 370, .	12.6	193
5	Deletions, Inversions, Duplications: Engineering of Structural Variants using CRISPR/Cas in Mice. Cell Reports, 2015, 10, 833-839.	6.4	181
6	Polymer physics predicts the effects of structural variants on chromatin architecture. Nature Genetics, 2018, 50, 662-667.	21.4	179
7	Dynamic 3D chromatin architecture contributes to enhancer specificity and limb morphogenesis. Nature Genetics, 2018, 50, 1463-1473.	21.4	147
8	Antagonistic Activities of Sox2 and Brachyury Control the Fate Choice of Neuro-Mesodermal Progenitors. Developmental Cell, 2017, 42, 514-526.e7.	7.0	139
9	Preformed chromatin topology assists transcriptional robustness of <i>Shh</i> during limb development. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12390-12399.	7.1	131
10	Composition and dosage of a multipartite enhancer cluster control developmental expression of Ihh (Indian hedgehog). Nature Genetics, 2017, 49, 1539-1545.	21.4	107
11	Serial genomic inversions induce tissue-specific architectural stripes, gene misexpression and congenital malformations. Nature Cell Biology, 2019, 21, 305-310.	10.3	107
12	Epigenetic regulator function through mouse gastrulation. Nature, 2020, 584, 102-108.	27.8	89
13	Dnmt1 has de novo activity targeted to transposable elements. Nature Structural and Molecular Biology, 2021, 28, 594-603.	8.2	83
14	Non-coding deletions identify Maenli IncRNA as a limb-specific En1 regulator. Nature, 2021, 592, 93-98.	27.8	53
15	Exome sequencing and CRISPR/Cas genome editing identify mutations of <i>ZAK</i> as a cause of limb defects in humans and mice. Genome Research, 2016, 26, 183-191.	5.5	52
16	Noncoding copy-number variations are associated with congenital limb malformation. Genetics in Medicine, 2018, 20, 599-607.	2.4	42
17	The mole genome reveals regulatory rearrangements associated with adaptive intersexuality. Science, 2020, 370, 208-214.	12.6	41
18	Polycomb-mediated genome architecture enables long-range spreading of H3K27 methylation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119	7.1	33

LARS WITTLER

#	Article	IF	CITATIONS
19	Different Concentrations of FGF Ligands, FGF2 or FGF8 Determine Distinct States of WNT-Induced Presomitic Mesoderm. Stem Cells, 2016, 34, 1790-1800.	3.2	23
20	BRACHYURY directs histone acetylation to target loci during mesoderm development. EMBO Reports, 2018, 19, 118-134.	4.5	23
21	SLC20A1 Is Involved in Urinary Tract and Urorectal Development. Frontiers in Cell and Developmental Biology, 2020, 8, 567.	3.7	22
22	Genome-wide association study and mouse expression data identify a highly conserved 32 kb intergenic region between WNT3 and WNT9b as possible susceptibility locus for isolated classic exstrophy of the bladder. Human Molecular Genetics, 2014, 23, 5536-5544.	2.9	19
23	SRF is essential for mesodermal cell migration during elongation of the embryonic body axis. Mechanisms of Development, 2014, 133, 23-35.	1.7	14
24	Patterning and gastrulation defects caused by the <i>tw18</i> lethal are due to loss of <i>Ppp2r1a</i> . Biology Open, 2017, 6, 752-764.	1.2	14
25	Analysis of the Fam181 gene family during mouse development reveals distinct strain-specific expression patterns, suggesting a role in nervous system development and function. Gene, 2016, 575, 438-451.	2.2	13
26	A 37â€kb region upstream of <i>brachyury</i> comprising a notochord enhancer is essential for notochord and tail development. Development (Cambridge), 2021, 148, .	2.5	9
27	Emergence and patterning dynamics of mouse-definitive endoderm. IScience, 2022, 25, 103556.	4.1	9
28	A CRISPR-Cas9–engineered mouse model for GPI-anchor deficiency mirrors human phenotypes and exhibits hippocampal synaptic dysfunctions. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	8
29	NaÃ ⁻ ve-like pluripotency to pave the way for saving the northern white rhinoceros from extinction. Scientific Reports, 2022, 12, 3100.	3.3	6