
Darcy Lidington

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10008921/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Role of Sphingosine-1-Phosphate Phosphohydrolase 1 in the Regulation of Resistance Artery Tone. Circulation Research, 2008, 103, 315-324.	4.5	64
2	Tumor Necrosis Factor-α–Mediated Downregulation of the Cystic Fibrosis Transmembrane Conductance Regulator Drives Pathological Sphingosine-1-Phosphate Signaling in a Mouse Model of Heart Failure. Circulation, 2012, 125, 2739-2750.	1.6	63
3	Proximal Cerebral Arteries Develop Myogenic Responsiveness in Heart Failure via Tumor Necrosis Factor-α–Dependent Activation of Sphingosine-1-Phosphate Signaling. Circulation, 2012, 126, 196-206.	1.6	62
4	Therapeutically Targeting Tumor Necrosis Factor-α/Sphingosine-1-Phosphate Signaling Corrects Myogenic Reactivity in Subarachnoid Hemorrhage. Stroke, 2015, 46, 2260-2270.	2.0	57
5	Constitutive smooth muscle tumour necrosis factor regulates microvascular myogenic responsiveness and systemic blood pressure. Nature Communications, 2017, 8, 14805.	12.8	47
6	Capitalizing on diversity: an integrative approach towards the multiplicity of cellular mechanisms underlying myogenic responsiveness. Cardiovascular Research, 2013, 97, 404-412.	3.8	37
7	Sphingosine-1-Phosphate Is a Novel Regulator of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Activity. PLoS ONE, 2015, 10, e0130313.	2.5	34
8	The role of the sphingosine-1-phosphate signaling pathway in osteocyte mechanotransduction. Bone, 2015, 79, 71-78.	2.9	33
9	Cerebral Autoregulation in Subarachnoid Hemorrhage. Frontiers in Neurology, 2021, 12, 688362.	2.4	29
10	The Phosphorylation Motif at Serine 225 Governs the Localization and Function of Sphingosine Kinase 1 in Resistance Arteries. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1916-1922.	2.4	27
11	CFTR Therapeutics Normalize CerebralÂPerfusion Deficits in MouseÂModels of HeartÂFailure and Subarachnoid Hemorrhage. JACC Basic To Translational Science, 2019, 4, 940-958.	4.1	27
12	Tumor Necrosis Factor/Sphingosine-1-Phosphate Signaling Augments Resistance Artery Myogenic Tone in Diabetes. Diabetes, 2016, 65, 1916-1928.	0.6	22
13	Sphingosine-1-Phosphate Signaling Regulates Myogenic Responsiveness in Human Resistance Arteries. PLoS ONE, 2015, 10, e0138142.	2.5	14
14	Cerebral artery myogenic reactivity: The next frontier in developing effective interventions for subarachnoid hemorrhage. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 17-37.	4.3	12
15	Circadian Rhythmicity in Cerebral Microvascular Tone Influences Subarachnoid Hemorrhage–Induced Injury. Stroke, 2022, 53, 249-259.	2.0	9
16	A Scientific Rationale for Using Cystic Fibrosis Transmembrane Conductance Regulator Therapeutics in COVID-19 Patients. Frontiers in Physiology, 2020, 11, 583862.	2.8	7
17	Experimental Subarachnoid Hemorrhage Drives Catecholamine-Dependent Cardiac and Peripheral Microvascular Dysfunction. Frontiers in Physiology, 2020, 11, 402.	2.8	4
18	The emerging significance of circadian rhythmicity in microvascular resistance. Chronobiology International, 2022, 39, 465-475.	2.0	2