List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1000734/publications.pdf Version: 2024-02-01

		44069	58581
86	12,876	48	82
papers	citations	h-index	g-index
131	131	131	12836
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Conditional loss of Engrailed1/2 in Atoh1 â€derived excitatory cerebellar nuclear neurons impairs eupneic respiration in mice. Genes, Brain and Behavior, 2022, 21, e12788.	2.2	4
2	Basic science under threat: Lessons from the Skirball Institute. Cell, 2022, 185, 755-758.	28.9	0
3	Rapid and efficient degradation of endogenous proteins inÂvivo identifies stage-specific roles of RNA Pol II pausing in mammalian development. Developmental Cell, 2022, 57, 1068-1080.e6.	7.0	21
4	CSF1R inhibition depletes tumor-associated macrophages and attenuates tumor progression in a mouse sonic Hedgehog-Medulloblastoma model. Oncogene, 2021, 40, 396-407.	5.9	35
5	Kathryn Anderson (1952–2020). Cell, 2021, 184, 1123-1126.	28.9	0
6	Injury-induced ASCL1 expression orchestrates a transitory cell state required for repair of the neonatal cerebellum. Science Advances, 2021, 7, eabj1598.	10.3	5
7	MEMRIâ€based imaging pipeline for guiding preclinical studies in mouse models of sporadic medulloblastoma. Magnetic Resonance in Medicine, 2020, 83, 214-227.	3.0	4
8	Single-cell profiling reveals an endothelium-mediated immunomodulatory pathway in the eye choroid. Journal of Experimental Medicine, 2020, 217, .	8.5	55
9	A collection of genetic mouse lines and related tools for inducible and reversible intersectional misexpression. Development (Cambridge), 2020, 147, .	2.5	10
10	Single-Cell Profiling and SCOPE-Seq Reveal Lineage Dynamics of Adult Ventricular-Subventricular Zone Neurogenesis and NOTUM as a Key Regulator. Cell Reports, 2020, 31, 107805.	6.4	44
11	Centrosome anchoring regulates progenitor properties and cortical formation. Nature, 2020, 580, 106-112.	27.8	60
12	YAP1 is involved in replenishment of granule cell precursors following injury to the neonatal cerebellum. Developmental Biology, 2019, 455, 458-472.	2.0	9
13	CSF-1 controls cerebellar microglia and is required for motor function and social interaction. Journal of Experimental Medicine, 2019, 216, 2265-2281.	8.5	138
14	Childhood cerebellar tumours mirror conserved fetal transcriptional programs. Nature, 2019, 572, 67-73.	27.8	293
15	Genetic deletion of genes in the cerebellar rhombic lip lineage can stimulate compensation through adaptive reprogramming of ventricular zone-derived progenitors. Neural Development, 2019, 14, 4.	2.4	18
16	Cerebellar folding is initiated by mechanical constraints on a fluid-like layer without a cellular pre-pattern. ELife, 2019, 8, .	6.0	26
17	Cerebellar nuclei excitatory neurons regulate developmental scaling of presynaptic Purkinje cell number and organ growth. ELife, 2019, 8, .	6.0	28
18	Lateral cerebellum is preferentially sensitive to high sonic hedgehog signaling and medulloblastoma formation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3392-3397.	7.1	34

#	Article	IF	CITATIONS
19	Cell-nonautonomous local and systemic responses to cell arrest enable long-bone catch-up growth in developing mice. PLoS Biology, 2018, 16, e2005086.	5.6	38
20	Age-dependent dormant resident progenitors are stimulated by injury to regenerate Purkinje neurons. ELife, 2018, 7, .	6.0	9
21	Stromal Hedgehog signaling maintains smooth muscle and hampers micro-invasive prostate cancer. DMM Disease Models and Mechanisms, 2017, 10, 39-52.	2.4	23
22	Cellular and Genetic Programs Underlying Cerebellum Development. Contemporary Clinical Neuroscience, 2017, , 45-65.	0.3	1
23	Cerebellar granule cell replenishment postinjury by adaptive reprogramming of Nestin+ progenitors. Nature Neuroscience, 2017, 20, 1361-1370.	14.8	82
24	Altered paracrine signaling from the injured knee joint impairs postnatal long bone growth. ELife, 2017, 6, .	6.0	11
25	A Mathematical Model of Granule Cell Generation During Mouse Cerebellum Development. Bulletin of Mathematical Biology, 2016, 78, 859-878.	1.9	10
26	From Cloning Neural Development Genes to Functional Studies in Mice, 30 Years of Advancements. Current Topics in Developmental Biology, 2016, 116, 501-515.	2.2	7
27	Differential timing of granule cell production during cerebellum development underlies generation of the foliation pattern. Neural Development, 2016, 11, 17.	2.4	39
28	Consensus Paper: Cerebellar Development. Cerebellum, 2016, 15, 789-828.	2.5	337
29	4D MEMRI atlas of neonatal FVB/N mouse brain development. NeuroImage, 2015, 118, 49-62.	4.2	50
30	Hedgehog signaling in prostate epithelial–mesenchymal growth regulation. Developmental Biology, 2015, 400, 94-104.	2.0	26
31	Clonal analysis reveals granule cell behaviors and compartmentalization that determine the folded morphology of the cerebellum. Development (Cambridge), 2015, 142, 1661-71.	2.5	61
32	Regulation of Long Bone Growth in Vertebrates; It Is Time to Catch Up. Endocrine Reviews, 2015, 36, 646-680.	20.1	58
33	Wholeâ€genome sequencing identifies EN1 as a determinant of bone density and fracture. Nature, 2015, 526, 112-117.	27.8	483
34	In Vivo Mn-Enhanced MRI for Early Tumor Detection and Growth Rate Analysis in a Mouse Medulloblastoma Model. Neoplasia, 2014, 16, 993-1006.	5.3	19
35	Roles for Hedgehog signaling in adult organ homeostasis and repair. Development (Cambridge), 2014, 141, 3445-3457.	2.5	328
36	Loss of GABAergic neurons in the hippocampus and cerebral cortex of Engrailed-2 null mutant mice: Implications for autism spectrum disorders. Experimental Neurology, 2013, 247, 496-505.	4.1	83

#	Article	IF	CITATIONS
37	Hedgehog Signaling in Neonatal and Adult Lung. American Journal of Respiratory Cell and Molecular Biology, 2013, 48, 703-710.	2.9	68
38	Titration of GLI3 Repressor Activity by Sonic Hedgehog Signaling Is Critical for Maintaining Multiple Adult Neural Stem Cell and Astrocyte Functions. Journal of Neuroscience, 2013, 33, 17490-17505.	3.6	90
39	Sonic hedgehog signals to multiple prostate stromal stem cells that replenish distinct stromal subtypes during regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20611-20616.	7.1	60
40	MRI analysis of cerebellar and vestibular developmental phenotypes in Gbx2 conditional knockout mice. Magnetic Resonance in Medicine, 2013, 70, spcone-spcone.	3.0	0
41	MRI analysis of cerebellar and vestibular developmental phenotypes in <i>Gbx2</i> conditional knockout mice. Magnetic Resonance in Medicine, 2013, 70, 1707-1717.	3.0	14
42	MASTR: A Technique for Mosaic Mutant Analysis with Spatial and Temporal Control of Recombination Using Conditional Floxed Alleles in Mice. Cell Reports, 2012, 2, 386-396.	6.4	88
43	Limb anterior–posterior polarity integrates activator and repressor functions of GLI2 as well as GLI3. Developmental Biology, 2012, 370, 110-124.	2.0	62
44	Genetic Neuroanatomy. , 2012, , 36-50.		6
45	The engrailed homeobox genes are required in multiple cell lineages to coordinate sequential formation of fissures and growth of the cerebellum. Developmental Biology, 2012, 367, 25-39.	2.0	54
46	Nerve-Derived Sonic Hedgehog Defines a Niche for Hair Follicle Stem Cells Capable of Becoming Epidermal Stem Cells. Cell Stem Cell, 2011, 8, 552-565.	11.1	395
47	Spatially Restricted and Developmentally Dynamic Expression of Engrailed Genes in Multiple Cerebellar Cell Types. Cerebellum, 2011, 10, 356-372.	2.5	45
48	Temporal-spatial changes in Sonic Hedgehog expression and signaling reveal different potentials of ventral mesencephalic progenitors to populate distinct ventral midbrain nuclei. Neural Development, 2011, 6, 29.	2.4	106
49	Ascl1 Genetics Reveals Insights into Cerebellum Local Circuit Assembly. Journal of Neuroscience, 2011, 31, 11055-11069.	3.6	150
50	Engrailed Homeobox Genes Regulate Establishment of the Cerebellar Afferent Circuit Map. Journal of Neuroscience, 2010, 30, 10015-10024.	3.6	118
51	Hedgehog signaling regulates the generation of ameloblast progenitors in the continuously growing mouse incisor. Development (Cambridge), 2010, 137, 3753-3761.	2.5	155
52	The Engrailed homeobox genes determine the different foliation patterns in the vermis and hemispheres of the mammalian cerebellum. Development (Cambridge), 2010, 137, 519-529.	2.5	77
53	Sonic Hedgehog Regulates Discrete Populations of Astrocytes in the Adult Mouse Forebrain. Journal of Neuroscience, 2010, 30, 13597-13608.	3.6	159
54	Genetic Fate Mapping Using Site-Specific Recombinases. Methods in Enzymology, 2010, 477, 153-181.	1.0	29

#	Article	IF	CITATIONS
55	Engrailed Homeobox Genes Determine the Organization of Purkinje Cell Sagittal Stripe Gene Expression in the Adult Cerebellum. Journal of Neuroscience, 2008, 28, 12150-12162.	3.6	86
56	Gli3 coordinates three-dimensional patterning and growth of the tectum and cerebellum by integrating Shh and Fgf8 signaling. Development (Cambridge), 2008, 135, 2093-2103.	2.5	78
57	Genetic subdivision of the tectum and cerebellum into functionally related regions based on differential sensitivity to engrailed proteins. Development (Cambridge), 2007, 134, 2325-2335.	2.5	93
58	Morphology, Molecular Codes, and Circuitry Produce the Three-Dimensional Complexity of the Cerebellum. Annual Review of Cell and Developmental Biology, 2007, 23, 549-577.	9.4	346
59	Cerebellum morphogenesis: the foliation pattern is orchestrated by multi-cellular anchoring centers. Neural Development, 2007, 2, 26.	2.4	206
60	The level of sonic hedgehog signaling regulates the complexity of cerebellar foliation. Development (Cambridge), 2006, 133, 1811-1821.	2.5	253
61	Morphogen to mitogen: the multiple roles of hedgehog signalling in vertebrate neural development. Nature Reviews Neuroscience, 2006, 7, 772-783.	10.2	375
62	Genetic inducible fate mapping in mouse: Establishing genetic lineages and defining genetic neuroanatomy in the nervous system. Developmental Dynamics, 2006, 235, 2376-2385.	1.8	173
63	Sonic hedgehog Signaling Regulates Cli2 Transcriptional Activity by Suppressing Its Processing and Degradation. Molecular and Cellular Biology, 2006, 26, 3365-3377.	2.3	459
64	Sonic hedgehog regulates Gli activator and repressor functions with spatial and temporal precision in the mid/hindbrain region. Development (Cambridge), 2006, 133, 1799-1809.	2.5	153
65	In vivo analysis of quiescent adult neural stem cells responding to Sonic hedgehog. Nature, 2005, 437, 894-897.	27.8	636
66	Morphogenetic and Cellular Movements that Shape the Mouse Cerebellum. Neuron, 2005, 45, 27-40.	8.1	167
67	Spatial pattern of sonic hedgehog signaling through Gli genes during cerebellum development. Development (Cambridge), 2004, 131, 5581-5590.	2.5	244
68	Dynamic Changes in the Response of Cells to Positive Hedgehog Signaling during Mouse Limb Patterning. Cell, 2004, 118, 505-516.	28.9	476
69	Cell Behaviors and Genetic Lineages of the Mesencephalon and Rhombomere 1. Neuron, 2004, 43, 345-357.	8.1	265
70	All Mouse Ventral Spinal Cord Patterning by Hedgehog Is Gli Dependent and Involves an Activator Function of Gli3. Developmental Cell, 2004, 6, 103-115.	7.0	399
71	<i>Gli2</i> , but not <i>Gli1</i> , is required for initial Shh signaling and ectopic activation of the Shh pathway. Development (Cambridge), 2002, 129, 4753-4761.	2.5	544
72	Gli2, but not Gli1, is required for initial Shh signaling and ectopic activation of the Shh pathway. Development (Cambridge), 2002, 129, 4753-61.	2.5	360

#	Article	IF	CITATIONS
73	<i>Gli1</i> can rescue the in vivo function of <i>Gli2</i> . Development (Cambridge), 2001, 128, 5161-5172.	2.5	243
74	Two lineage boundaries coordinate vertebrate apical ectodermal ridge formation. Genes and Development, 2000, 14, 1377-1389.	5.9	284
75	Pattern Deformities and Cell Loss inEngrailed-2Mutant Mice Suggest Two Separate Patterning Events during Cerebellar Development. Journal of Neuroscience, 1997, 17, 7881-7889.	3.6	136
76	The Engrailed-2 homeobox gene and patterning of spinocerebellar mossy fiber afferents. Developmental Brain Research, 1996, 96, 210-218.	1.7	26
77	Genomic imprinting of Mash2, a mouse gene required for trophoblast development. Nature Genetics, 1995, 9, 235-242.	21.4	359
78	Essential role of Mash-2 in extraembryonic development. Nature, 1994, 371, 333-336.	27.8	588
79	Expression of Three Mouse Homologs of the Drosophila Segment Polarity Gene cubitus interruptus, Gli, Gli-2, and Gli-3, in Ectoderm- and Mesoderm-Derived Tissues Suggests Multiple Roles during Postimplantation Development. Developmental Biology, 1994, 162, 402-413.	2.0	439
80	A mouse model of Greig cephalo–polysyndactyly syndrome: the extra–toesJ mutation contains an intragenic deletion of the Gli3 gene. Nature Genetics, 1993, 3, 241-246.	21.4	669
81	Dynamic expression of the murine Achaete-Scute homologue Mash-1 in the developing nervous system. Mechanisms of Development, 1993, 42, 171-185.	1.7	389
82	The Gene Trap Approach in Embryonic Stem Cells: The Potential for Genetic Screens in Mice. Novartis Foundation Symposium, 1992, 165, 277-301.	1.1	5
83	Gene targeting and gene trap screens using embryonic stem cells: New approaches to mammalian development. BioEssays, 1991, 13, 649-656.	2.5	66
84	An Sst1 RFLP for the human homeo box-containing geneEN2. Nucleic Acids Research, 1989, 17, 2878-2878.	14.5	3
85	Pvull and Rsal RFLPs for the human homeo box-containing geneEN2. Nucleic Acids Research, 1989, 17, 2879-2879.	14.5	3
86	Production of a mutation in mouse En-2 gene by homologous recombination in embryonic stem cells. Nature, 1989, 338, 153-156.	27.8	210