
Christoffer Gebhardt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1000733/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature, 2017, 547, 222-226.	13.7	1,806
2	S100A8 and S100A9 in inflammation and cancer. Biochemical Pharmacology, 2006, 72, 1622-1631.	2.0	581
3	Baseline Biomarkers for Outcome of Melanoma Patients Treated with Pembrolizumab. Clinical Cancer Research, 2016, 22, 5487-5496.	3.2	480
4	RAGE signaling sustains inflammation and promotes tumor development. Journal of Experimental Medicine, 2008, 205, 275-285.	4.2	352
5	Myeloid Cells and Related Chronic Inflammatory Factors as Novel Predictive Markers in Melanoma Treatment with Ipilimumab. Clinical Cancer Research, 2015, 21, 5453-5459.	3.2	304
6	Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task. European Journal of Cancer, 2019, 113, 47-54.	1.3	300
7	The Role of Myeloid-Derived Suppressor Cells (MDSC) in Cancer Progression. Vaccines, 2016, 4, 36.	2.1	296
8	Endothelial Notch1 Activity Facilitates Metastasis. Cancer Cell, 2017, 31, 355-367.	7.7	237
9	Reactive Neutrophil Responses Dependent on the Receptor Tyrosine Kinase c-MET Limit Cancer Immunotherapy. Immunity, 2017, 47, 789-802.e9.	6.6	207
10	A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task. European Journal of Cancer, 2019, 111, 148-154.	1.3	197
11	Myeloid Cell Function in MRP-14 (S100A9) Null Mice. Molecular and Cellular Biology, 2003, 23, 2564-2576.	1.1	190
12	Elevated chronic inflammatory factors and myeloidâ€derived suppressor cells indicate poor prognosis in advanced melanoma patients. International Journal of Cancer, 2015, 136, 2352-2360.	2.3	142
13	S100A8 and S100A9 are novel nuclear factor kappa B target genes during malignant progression of murine and human liver carcinogenesis. Hepatology, 2009, 50, 1251-1262.	3.6	129
14	CCR5+ Myeloid-Derived Suppressor Cells Are Enriched and Activated in Melanoma Lesions. Cancer Research, 2018, 78, 157-167.	0.4	127
15	Calgranulins S100A8 and S100A9 are negatively regulated by glucocorticoids in a c-Fos-dependent manner and overexpressed throughout skin carcinogenesis. Oncogene, 2002, 21, 4266-4276.	2.6	109
16	Tumour hypoxia promotes melanoma growth and metastasis via High Mobility Group Box-1 and M2-like macrophages. Scientific Reports, 2016, 6, 29914.	1.6	99
17	CCR5 in recruitment and activation of myeloid-derived suppressor cells in melanoma. Cancer Immunology, Immunotherapy, 2017, 66, 1015-1023.	2.0	68
18	Homeostatic nuclear RAGE–ATM interaction is essential for efficient DNA repair. Nucleic Acids Research, 2017, 45, 10595-10613.	6.5	66

Christoffer Gebhardt

#	Article	IF	CITATIONS
19	Myeloid-derived suppressor cells and tumor escape from immune surveillance. Seminars in Immunopathology, 2017, 39, 295-305.	2.8	63
20	Current and Future Clinical Applications of ctDNA in Immuno-Oncology. Cancer Research, 2022, 82, 349-358.	0.4	57
21	Profile of gene expression induced by the tumour promotor TPA in murine epithelial cells. International Journal of Cancer, 2003, 104, 699-708.	2.3	56
22	Tumor microenvironment-derived S100A8/A9 is a novel prognostic biomarker for advanced melanoma patients and during immunotherapy with anti-PD-1 antibodies. , 2019, 7, 343.		56
23	Liquid Profiling of Circulating Tumor DNA in Plasma of Melanoma Patients for Companion Diagnostics and Monitoring of BRAF Inhibitor Therapy. Clinical Chemistry, 2018, 64, 830-842.	1.5	50
24	Histone methyltransferase SETDB1 contributes to melanoma tumorigenesis and serves as a new potential therapeutic target. International Journal of Cancer, 2019, 145, 3462-3477.	2.3	46
25	c-Fos-Dependent Induction of the Small Ras-Related GTPase Rab11a in Skin Carcinogenesis. American Journal of Pathology, 2005, 167, 243-253.	1.9	44
26	Myeloidâ€derived suppressor cells in malignant melanoma. JDDG - Journal of the German Society of Dermatology, 2014, 12, 1021-1027.	0.4	44
27	New therapeutic options for advanced non-resectable malignant melanoma. Advances in Medical Sciences, 2015, 60, 83-88.	0.9	40
28	First-line therapy-stratified survival in BRAF-mutant melanoma: a retrospective multicenter analysis. Cancer Immunology, Immunotherapy, 2019, 68, 765-772.	2.0	35
29	Melanoma-Derived iPCCs Show Differential Tumorigenicity and Therapy Response. Stem Cell Reports, 2017, 8, 1379-1391.	2.3	33
30	The shedded ectodomain of Lyve-1 expressed on M2-like tumor-associated macrophages inhibits melanoma cell proliferation. Oncotarget, 2017, 8, 103682-103692.	0.8	30
31	Identification of the Rage-dependent gene regulatory network in a mouse model of skin inflammation. BMC Genomics, 2010, 11, 537.	1.2	29
32	Interplay between coagulation and inflammation in cancer: Limitations and therapeutic opportunities. Cancer Treatment Reviews, 2022, 102, 102322.	3.4	29
33	Diminished levels of the soluble form of <scp>RAGE</scp> are related to poor survival in malignant melanoma. International Journal of Cancer, 2015, 137, 2607-2617.	2.3	28
34	Cutaneous squamous cell carcinoma (cSCC) and immunosurveillance – the impact of immunosuppression on frequency of cSCC. Journal of the European Academy of Dermatology and Venereology, 2019, 33, 33-37.	1.3	28
35	Directed Dedifferentiation Using Partial Reprogramming Induces Invasive Phenotype in Melanoma Cells. Stem Cells, 2016, 34, 832-846.	1.4	27
36	<scp>TGF</scp> â€ <i>β</i> induces <scp>SOX</scp> 2 expression in a timeâ€dependent manner in human melanoma cells. Pigment Cell and Melanoma Research, 2016, 29, 453-458.	1.5	27

Christoffer Gebhardt

#	Article	IF	CITATIONS
37	Biomarker value and pitfalls of serum S100B in the followâ€up of highâ€risk melanoma patients. JDDG - Journal of the German Society of Dermatology, 2016, 14, 158-164.	0.4	26
38	CD74 and CD44 Expression on CTCs in Cancer Patients with Brain Metastasis. International Journal of Molecular Sciences, 2021, 22, 6993.	1.8	26
39	Dâ€dimers in malignant melanoma: Association with prognosis and dynamic variation in disease progress. International Journal of Cancer, 2017, 140, 914-921.	2.3	24
40	Keratinocyte-Specific Onset of Serine Protease BSSP Expression in Experimental Carcinogenesis. Journal of Investigative Dermatology, 2001, 117, 634-640.	0.3	23
41	Predictive immune markers in advanced melanoma patients treated with ipilimumab. Oncolmmunology, 2016, 5, e1158901.	2.1	23
42	Liquid biopsy to monitor melanoma patients. JDDG - Journal of the German Society of Dermatology, 2018, 16, 405-414.	0.4	19
43	Preâ€analytical factors affecting the establishment of a single tube assay for multiparameter liquid biopsy detection in melanoma patients. Molecular Oncology, 2020, 14, 1001-1015.	2.1	19
44	A Novel Aspartic Proteinase-Like Gene Expressed in Stratified Epithelia and Squamous Cell Carcinoma of the Skin. American Journal of Pathology, 2006, 168, 1354-1364.	1.9	18
45	Factors Influencing the Adjuvant Therapy Decision: Results of a Real-World Multicenter Data Analysis of 904 Melanoma Patients. Cancers, 2021, 13, 2319.	1.7	15
46	Myeloide Suppressorzellen (MDSC) beim malignen Melanom. JDDG - Journal of the German Society of Dermatology, 2014, 12, 1021-1027.	0.4	14
47	MAP kinase pathway gene copy alterations in <i>NRAS/BRAF</i> wild-type advanced melanoma. International Journal of Cancer, 2016, 138, 2257-2262.	2.3	12
48	Expression of Neural Crest Markers GLDC and ERRF11 is Correlated with Melanoma Prognosis. Cancers, 2019, 11, 76.	1.7	11
49	Pretreatment metastatic growth rate determines clinical outcome of advanced melanoma patients treated with anti-PD-1 antibodies: a multicenter cohort study. , 2021, 9, e002350.		11
50	Leukocyte Count Restoration Under Dabrafenib Treatment in a Melanoma Patient With Vemurafenib-Induced Leukopenia. Medicine (United States), 2014, 93, e161.	0.4	10
51	The concepts of rechallenge and retreatment in melanoma: A proposal for consensus definitions. European Journal of Cancer, 2020, 138, 68-76.	1.3	10
52	Abstract CT156: A first-in-human phase I/II clinical trial assessing novel mRNA-lipoplex nanoparticles encoding shared tumor antigens for immunotherapy of malignant melanoma. Cancer Research, 2018, 78, CT156-CT156.	0.4	10
53	Combination of Immune Checkpoint Inhibitors and Liver-Specific Therapies in Liver-Metastatic Uveal Melanoma: Can We Thus Overcome Its High Resistance?. Cancers, 2021, 13, 6390.	1.7	10
54	The GNAQ in the haystack: intramedullary meningeal melanocytoma of intermediate grade at T9–10 in a 58-year-old woman. Journal of Neurosurgery, 2016, 125, 53-56.	0.9	9

#	Article	IF	CITATIONS
55	Sentinel node metastasis mitotic rate (SN ―MMR) as a prognostic indicator of rapidly progressing disease in patients with sentinel nodeâ€positive melanomas. International Journal of Cancer, 2017, 140, 1907-1917.	2.3	9
56	Recurrent tattoo reactions in a patient treated with <scp>BRAF</scp> and <scp>MEK</scp> inhibitors. Journal of the European Academy of Dermatology and Venereology, 2017, 31, e375-e377.	1.3	8
57	STAT5 expression correlates with recurrence and survival in melanoma patients treated with interferon- $\hat{1}\pm$. Melanoma Research, 2018, 28, 204-210.	0.6	8
58	Potential therapeutic effect of low-dose paclitaxel in melanoma patients resistant to immune checkpoint blockade: A pilot study. Cellular Immunology, 2021, 360, 104274.	1.4	8
59	Avelumab expanded access program in metastatic Merkel cell carcinoma: Efficacy and safety findings from patients in Europe and the Middle East. International Journal of Cancer, 2021, 149, 1926-1934.	2.3	8
60	Emerging precision diagnostics in advanced cutaneous squamous cell carcinoma. Npj Precision Oncology, 2022, 6, 17.	2.3	7
61	T cell responses in early-stage melanoma patients occur frequently and are not associated with humoral response. Cancer Immunology, Immunotherapy, 2015, 64, 1369-1381.	2.0	6
62	Complete remission of treatment-refractory advanced angiosarcoma of the scalp by protracted intralesional interleukin-2 therapy. British Journal of Dermatology, 2015, 172, 1156-1158.	1.4	6
63	A first-in-human phase I/II clinical trial assessing novel mRNA-lipoplex nanoparticles encoding shared tumor antigens for potent melanoma immunotherapy. Annals of Oncology, 2017, 28, xi14-xi15.	0.6	6
64	Liquid Biopsy zur Überwachung von Melanompatienten. JDDG - Journal of the German Society of Dermatology, 2018, 16, 405-416.	0.4	6
65	Extracorporal Shock Wave Therapy Enhances Receptor for Advanced Glycated End-Product–Dependent Flap Survival and Angiogenesis. Annals of Plastic Surgery, 2018, 80, 424-431.	0.5	5
66	Efficacy of Vemurafenib in a Trametinib-Resistant Stage IV Melanoma Patient—Letter. Clinical Cancer Research, 2014, 20, 2498-2499.	3.2	4
67	Multiple White Cysts on Face and Trunk of a Melanoma Patient Treated with Vemurafenib. Acta Dermato-Venereologica, 2015, 95, 96-97.	0.6	4
68	Value of cemiplimab in progressive metastatic cutaneous squamous cell carcinoma after kidney transplantation: a case report. Journal of the European Academy of Dermatology and Venereology, 2022, 36, 49-52.	1.3	4
69	Patterns of care and follow-up care of patients with uveal melanoma in German-speaking countries: a multinational survey of the German Dermatologic Cooperative Oncology Group (DeCOG). Journal of Cancer Research and Clinical Oncology, 2021, 147, 1763-1771.	1.2	2
70	Acceptance and Benefits of Two Different Strategies to Timely Integrate Specialist Palliative Care into Routine Cancer Care: A Randomized Pilot Study. Oncology Research and Treatment, 2022, 45, 118-129.	0.8	2
71	Letter to the Editor: Role of mutational status of GNAQ and GNA11 in the diagnosis of melanocytic tumors. Journal of Neurosurgery, 2017, 126, 1024-1026.	0.9	1
72	1104P Nivolumab (NIVO) monotherapy or combination therapy with ipilimumab (NIVO+IPI) in advanced melanoma patients with brain metastases: Real-world evidence from the German non-interventional study NICO. Annals of Oncology, 2020, 31, S746-S747.	0.6	1

#	Article	IF	CITATIONS
73	Surveillance of patients with conjunctival melanoma in German-speaking countries: A multinational survey of the German dermatologic cooperative oncology group. European Journal of Cancer, 2021, 143, 43-45.	1.3	1
74	Hyperprogression fortgeschrittener Melanomerkrankung unter Pembrolizumab adjuvant. JDDG - Journal of the German Society of Dermatology, 2021, 19, 37-39.	0.4	1
75	3323 The GERMELATOX DeCOG-trial: The attitude of German melanoma patients towards toxicity during adjuvant interferon treatment - Differences between the patient's and the physician's perspective. European Journal of Cancer, 2015, 51, S671-S672.	1.3	0
76	Analysis of BRAF V600E mutation status – concordance of results from circulating tumor DNA and tissue-based testing and impact on prediction of the clinical course in patients undergoing BRAFi therapy. Annals of Oncology, 2016, 27, vi392.	0.6	0
77	Eignung und Probleme von Serum S100B als Biomarker zur Verlaufskontrolle bei Hochrisikoâ€Melanompatienten. JDDG - Journal of the German Society of Dermatology, 2016, 14, 158-165.	0.4	0
78	Multiple epidermotropic melanoma metastases developing during BRAF and MEK inhibitor therapy. JAAD Case Reports, 2018, 4, 129-131.	0.4	0
79	Adjuvant pembrolizumabâ€related hyperprogression in stage III melanoma. JDDG - Journal of the German Society of Dermatology, 2021, 19, 1341-1345.	0.4	0
80	1079P Comparison of effectiveness and safety of nivolumab monotherapy or in combination therapy with ipilimumab in therapy-naĀ̄ve and pretreated patients with advanced melanoma within the German noninterventional study NICO. Annals of Oncology, 2021, 32, S894-S895.	0.6	0
81	Adjuvante Pembrolizumabâ€assoziierte Hyperprogression eines Melanoms im StadiumÂlII. JDDG - Journal of the German Society of Dermatology, 2021, 19, 1341-1345.	0.4	0
82	277 Site-Specific Tumor Response and Impact on Therapy Outcomes in Advanced Melanoma Patients. Journal of Investigative Dermatology, 2021, 141, S196.	0.3	0
83	RAGE ligand S100A8/A9 as a novel prognostic biomarker for high-risk melanoma patients Journal of Clinical Oncology, 2014, 32, 9070-9070.	0.8	0
84	The GERMELATOX DeCOG-trial: German melanoma patients and their attitude toward toxicity during adjuvant interferon treatment Journal of Clinical Oncology, 2014, 32, TPS9113-TPS9113.	0.8	0
85	The GERMELATOX DeCOG-trial: Attitude of German melanoma patients towards toxicity during adjuvant interferon treatment—Differences between the patient's and the physician's perspective Journal of Clinical Oncology, 2015, 33, e20099-e20099.	0.8	0
86	Abstract 805: Subcellular distribution of RAGE affects its functions in melanoma growth and progression. , 2015, , .		0
87	Abstract 1277: Neural crest-like gene FOXD1 plays a role in melanoma cell migration and invasion. Cancer Research, 2016, 76, 1277-1277.	0.4	0
88	Malignes Melanom beim alten und geriatrischen Patienten. , 2017, , 1-8.		0
89	Malignes Melanom beim alten und geriatrischen Patienten. , 2018, , 527-534.		0
90	Meeting Report: 47th Annual Meeting of the "Arbeitsgemeinschaft Dermatologische Forschung― Experimental Dermatology, 2022, 31, 1641-1651.	1.4	0