Guosong Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1000241/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Self-assembly behavior of disaccharide-containing supra-amphiphiles. Chinese Chemical Letters, 2023, 34, 107566.	9.0	2
2	Polymorphism of Kdo-Based Glycolipids: The Elaborately Determined Stable and Dynamic Bicelles. CCS Chemistry, 2022, 4, 2228-2238.	7.8	9
3	Tunable Aggregation - Induced Emission Fluorophore with the Assistance of the Self - Assembly of Block Copolymers by Controlling the Morphology and Secondary Conformation for Bioimaging. Biomacromolecules, 2022, 23, 798-807.	5.4	9
4	Template synthesis of dual-functional porous MoS ₂ nanoparticles with photothermal conversion and catalytic properties. Nanoscale, 2022, 14, 6888-6901.	5.6	13
5	Liposome-Based Carbohydrate Vaccine for Simultaneously Eliciting Humoral and Cellular Antitumor Immunity. ACS Macro Letters, 2022, 11, 975-981.	4.8	2
6	Photoresponsive glyco-nanostructures integrated from supramolecular metallocarbohydrates for the reversible capture and release of lectins. Polymer Chemistry, 2021, 12, 3096-3104.	3.9	2
7	A Comprehensive Landscape for Fibril Association Behaviors Encoded Synergistically by Saccharides and Peptides. Journal of the American Chemical Society, 2021, 143, 6622-6633.	13.7	19
8	Engineering the acyltransferase domain of epothilone polyketide synthase to alter the substrate specificity. Microbial Cell Factories, 2021, 20, 86.	4.0	10
9	Polyamineâ€Responsive Morphological Transformation of a Supramolecular Peptide for Specific Drug Accumulation and Retention in Cancer Cells. Small, 2021, 17, e2101139.	10.0	35
10	Carbohydrate-Based Macromolecular Biomaterials. Chemical Reviews, 2021, 121, 10950-11029.	47.7	122
11	The Past Ten Years of Carbohydrate Polymers in ACS Macro Letters. ACS Macro Letters, 2021, 10, 1145-1150.	4.8	6
12	Glycopolymer-Based Hydrogels, Microgels, and Nanogels and Their Applications. , 2021, , 93-115.		0
13	Self-Assembled Saccharide-Functionalized Amphiphilic Metallacycles as Biofilms Inhibitor via "Sweet Talking― ACS Macro Letters, 2020, 9, 61-69.	4.8	15
14	Dynamic-Covalent Hydrogel with NIR-Triggered Drug Delivery for Localized Chemo-Photothermal Combination Therapy. Biomacromolecules, 2020, 21, 556-565.	5.4	58
15	Hierarchical self-assembly of native protein and its dynamic regulation directed by inducing ligand with oligosaccharide. European Polymer Journal, 2020, 135, 109871.	5.4	0
16	Multi-Stimuli-Triggered Shape Transformation of Polymeric Filaments Derived from Dynamic Covalent Block Copolymers. Biomacromolecules, 2020, 21, 4159-4168.	5.4	4
17	Vapor-Stripping and Encapsulating to Construct Particles with Time-Controlled Asymmetry and Anisotropy. Coatings, 2020, 10, 1248.	2.6	2
18	Diving into the active, complex and living fairyland of precise biomacromolecular self-assemblies. Giant, 2020, 1, 100004.	5.1	2

#	Article	IF	CITATIONS
19	Functional Glycopolypeptides: Synthesis and Biomedical Applications. Advances in Polymer Technology, 2020, 2020, 1-16.	1.7	4
20	Cryo-Electron microscopy for the study of self-assembled poly(ionic liquid) nanoparticles and protein supramolecular structures. Colloid and Polymer Science, 2020, 298, 707-717.	2.1	13
21	Construction of Metallacycleâ€Linked Heteroarm Star Polymers via Orthogonal Postâ€Assembly Polymerization and Their Intriguing Selfâ€Assembly into Largeâ€Area and Regular Nanocubes â€. Chinese Journal of Chemistry, 2020, 38, 1285-1291.	4.9	6
22	Glycosyltransferase-Induced Morphology Transition of Glycopeptide Self-Assemblies with Proteoglycan Residues. ACS Macro Letters, 2020, 9, 929-936.	4.8	10
23	Exploring and Controlling the Polymorphism in Supramolecular Assemblies of Carbohydrates and Proteins. Accounts of Chemical Research, 2020, 53, 740-751.	15.6	28
24	Fast and Low-Cost Purification Strategy for Oligosaccharide Synthesis Based on a Hop-On/Off Carrier. Organic Letters, 2020, 22, 2564-2568.	4.6	9
25	Fabrication of Pascalâ€triangle Lattice of Proteins by Inducing Ligand Strategy. Angewandte Chemie - International Edition, 2020, 59, 9617-9623.	13.8	14
26	Glycoprotein Mimics with Tunable Functionalization through Global Amino Acid Substitution and Copper Click Chemistry. Bioconjugate Chemistry, 2020, 31, 554-566.	3.6	15
27	Fabrication of Pascalâ€ŧriangle Lattice of Proteins by Inducing Ligand Strategy. Angewandte Chemie, 2020, 132, 9704-9710.	2.0	1
28	Construction of Glyco-nanostructures Through the Self-Assembly of Saccharide-Containing Macrocyclic Amphiphiles. , 2020, , 997-1021.		0
29	Continuously Tunable Ion Rectification and Conductance in Submicrochannels Stemming from Thermoresponsive Polymer Selfâ€Assembly. Angewandte Chemie - International Edition, 2019, 58, 12481-12485.	13.8	34
30	Aggregation-Induced Emission Luminogen Assisted Self-Assembly and Morphology Transition of Amphiphilic Glycopolypeptide with Bioimaging Application. ACS Macro Letters, 2019, 8, 893-898.	4.8	29
31	Chemically Controlled Helical Polymorphism in Protein Tubes by Selective Modulation of Supramolecular Interactions. Journal of the American Chemical Society, 2019, 141, 19448-19457.	13.7	34
32	Continuously Tunable Ion Rectification and Conductance in Submicrochannels Stemming from Thermoresponsive Polymer Selfâ€Assembly. Angewandte Chemie, 2019, 131, 12611-12615.	2.0	4
33	Diversiform and Transformable Glyco-Nanostructures Constructed from Amphiphilic Supramolecular Metallocarbohydrates through Hierarchical Self-Assembly: The Balance between Metallacycles and Saccharides. ACS Nano, 2019, 13, 13474-13485.	14.6	32
34	Conformational manipulation of scale-up prepared single-chain polymeric nanogels for multiscale regulation of cells. Nature Communications, 2019, 10, 2705.	12.8	60
35	Glyco-Platelets with Controlled Morphologies via Crystallization-Driven Self-Assembly and Their Shape-Dependent Interplay with Macrophages. ACS Macro Letters, 2019, 8, 596-602.	4.8	63
36	The effect of monosaccharides on self-assembly of benzenetricarboxamides. Chinese Chemical Letters, 2019, 30, 587-591.	9.0	5

#	Article	IF	CITATIONS
37	Supramolecular Transformation of Metallacycle-linked Star Polymers Driven by Simple Phosphine Ligand-Exchange Reaction. Journal of the American Chemical Society, 2019, 141, 583-591.	13.7	46
38	Construction of Glyco-Nanostructures Through the Self-Assembly of Saccharide-Containing Macrocyclic Amphiphiles. , 2019, , 1-25.		0
39	Competition between Supramolecular Interaction and Protein–Protein Interaction in Protein Crystallization: Effects of Crystallization Method and Small Molecular Bridge. Industrial & Engineering Chemistry Research, 2018, 57, 6726-6733.	3.7	10
40	Glycocalyx-Mimicking Nanoparticles Improve Anti-PD-L1 Cancer Immunotherapy through Reversion of Tumor-Associated Macrophages. Biomacromolecules, 2018, 19, 2098-2108.	5.4	69
41	The glyco-regioisomerism effect on dynamic interactions between glycopolymers with galactose pendants and benzoxaborole-containing polymer. Science China Chemistry, 2018, 61, 71-75.	8.2	7
42	Interactions of Glycopolymers with Assemblies of Peptide Amphiphiles via Dynamic Covalent Bonding. ACS Biomaterials Science and Engineering, 2018, 4, 2061-2066.	5.2	5
43	Self-assembly of Human Galectin-1 via dual supramolecular interactions and its inhibition of T-cell agglutination and apoptosis. Nano Research, 2018, 11, 5566-5572.	10.4	9
44	CO ₂ -switchable response of protein microtubules: behaviour and mechanism. Materials Chemistry Frontiers, 2018, 2, 1642-1646.	5.9	2
45	Deprotection-Induced Morphology Transition and Immunoactivation of Glycovesicles: A Strategy of Smart Delivery Polymersomes. Journal of the American Chemical Society, 2018, 140, 8851-8857.	13.7	47
46	Preparation of Pt(iv)-crosslinked polymer nanoparticles with an anti-detoxifying effect for enhanced anticancer therapy. Polymer Chemistry, 2017, 8, 2410-2422.	3.9	17
47	Reversibly Manipulating the Surface Chemistry of Polymeric Nanostructures via a "Grafting To― Approach Mediated by Nucleobase Interactions. Macromolecules, 2017, 50, 3662-3670.	4.8	24
48	Highly Ordered Selfâ€Assembly of Native Proteins into 1D, 2D, and 3D Structures Modulated by the Tether Length of Assemblyâ€Inducing Ligands. Angewandte Chemie, 2017, 129, 10831-10835.	2.0	8
49	Highly Ordered Selfâ€Assembly of Native Proteins into 1D, 2D, and 3D Structures Modulated by the Tether Length of Assemblyâ€Inducing Ligands. Angewandte Chemie - International Edition, 2017, 56, 10691-10695.	13.8	59
50	A tetraphenylethylene (TPE)-based supra-amphiphilic organoplatinum(<scp>ii</scp>) metallacycle and its self-assembly behaviour. Materials Chemistry Frontiers, 2017, 1, 1823-1828.	5.9	63
51	Role of Protecting Groups in Synthesis and Self-Assembly of Glycopolymers. Biomacromolecules, 2017, 18, 568-575.	5.4	8
52	"Sweet―Architecture-Dependent Uptake of Glycocalyx-Mimicking Nanoparticles Based on Biodegradable Aliphatic Polyesters by Macrophages. Journal of the American Chemical Society, 2017, 139, 14684-14692.	13.7	64
53	CO ₂ Stimuli-Responsive, Injectable Block Copolymer Hydrogels Cross-Linked by Discrete Organoplatinum(II) Metallacycles via Stepwise Post-Assembly Polymerization. Journal of the American Chemical Society, 2017, 139, 13811-13820.	13.7	110
54	Rücktitelbild: Highly Ordered Selfâ€Assembly of Native Proteins into 1D, 2D, and 3D Structures Modulated by the Tether Length of Assemblyâ€Inducing Ligands (Angew. Chem. 36/2017). Angewandte Chemie, 2017, 129, 11100-11100.	2.0	0

#	Article	IF	CITATIONS
55	Three-dimensional protein assemblies directed by orthogonal non-covalent interactions. Chemical Communications, 2016, 52, 9687-9690.	4.1	6
56	Fate of Host-Stabilized Charge Transfer Complexation Based on Cucurbit[8]uril: Inducing Cyclization of PNIPAM and Dissociation in Self-Assembly of the Cyclic Polymer. ACS Macro Letters, 2016, 5, 588-592.	4.8	21
57	Shape Effect of Glyco-Nanoparticles on Macrophage Cellular Uptake and Immune Response. ACS Macro Letters, 2016, 5, 1059-1064.	4.8	112
58	Self-assembly of supra-amphiphile of azobenzene-galactopyranoside based on dynamic covalent bond and its dual responses. Chinese Chemical Letters, 2016, 27, 1740-1744.	9.0	7
59	Building Nanowires from Micelles: Hierarchical Self-Assembly of Alternating Amphiphilic Glycopolypeptide Brushes with Pendants of High-Mannose Glycodendron and Oligophenylalanine. Journal of the American Chemical Society, 2016, 138, 12387-12394.	13.7	54
60	Modification of polyfluorene nanoparticles via inclusion complexation based on cyclodextrin for lectin sensing and cell imaging. Science China Chemistry, 2016, 59, 1616-1620.	8.2	11
61	Precise protein assembly of array structures. Chemical Communications, 2016, 52, 10595-10605.	4.1	28
62	Precise and Reversible Protein-Microtubule-Like Structure with Helicity Driven by Dual Supramolecular Interactions. Journal of the American Chemical Society, 2016, 138, 1932-1937.	13.7	85
63	Construction of Smart Supramolecular Polymeric Hydrogels Cross-linked by Discrete Organoplatinum(II) Metallacycles via Post-Assembly Polymerization. Journal of the American Chemical Society, 2016, 138, 4927-4937.	13.7	184
64	A hybrid hydrogel based on clay nanoplatelets and host–guest inclusion complexes. Chinese Chemical Letters, 2016, 27, 583-587.	9.0	9
65	Thermoresponsive AuNPs Stabilized by Pillararene ontaining Polymers. Macromolecular Rapid Communications, 2015, 36, 1492-1497.	3.9	33
66	Glycocalyxâ€Mimicking Nanoparticles for Stimulation and Polarization of Macrophages via Specific Interactions. Small, 2015, 11, 4191-4200.	10.0	88
67	Supramolecular Glycoâ€nanoparticles Toward Immunological Applications. Small, 2015, 11, 6065-6070.	10.0	16
68	Deprotection-Induced Micellization of Glycopolymers: Control of Kinetics and Morphologies. Macromolecules, 2015, 48, 3705-3712.	4.8	24
69	Sequence-Defined Peptidocopolymers: The Effect of Small Molecular Linkers. Biomacromolecules, 2015, 16, 3995-4003.	5.4	3
70	Stereoisomerism effect on sugar–lectin binding of self-assembled glyco-nanoparticles of linear and brush copolymers. Colloids and Surfaces B: Biointerfaces, 2015, 133, 12-18.	5.0	10
71	A facile approach to prepare hybrid nanoparticles with morphology controlled by the thickness of glyco-shell. Chinese Chemical Letters, 2015, 26, 847-850.	9.0	3
72	Functionalization of DNA-Dendron Supramolecular Fibers and Application in Regulation of <i> Escherichia coli</i> Association. ACS Applied Materials & Interfaces, 2015, 7, 7351-7356.	8.0	12

#	Article	IF	CITATIONS
73	A fixable supramolecular cyclic polymer based on the cucurbit[8]uril-stabilized π–π interaction. Polymer Chemistry, 2015, 6, 6880-6884.	3.9	23
74	Fluorous-based carbohydrate Quartz Crystal Microbalance. Carbohydrate Research, 2015, 405, 66-69.	2.3	5
75	Direct and indirect core–shell inversion of block copolymer micelles. Polymer Chemistry, 2014, 5, 234-240.	3.9	12
76	Protein crystalline frameworks with controllable interpenetration directed by dual supramolecular interactions. Nature Communications, 2014, 5, 4634.	12.8	112
77	Glyco-regioisomerism Effect on Lectin-Binding and Cell-Uptake Pathway of Glycopolymer-Containing Nanoparticles. ACS Macro Letters, 2014, 3, 96-101.	4.8	59
78	The glyco-stereoisomerism effect on hydrogelation of polymers interacting via dynamic covalent bonds. Chemical Communications, 2014, 50, 9779-9782.	4.1	31
79	Dendritic Cell Lectin-Targeting Sentinel-like Unimolecular Glycoconjugates To Release an Anti-HIV Drug. Journal of the American Chemical Society, 2014, 136, 4325-4332.	13.7	137
80	A polymeric chain extension driven by HSCT interaction. Polymer Chemistry, 2014, 5, 2709-2714.	3.9	18
81	Glyco-Inside Micelles and Vesicles Directed by Protection–Deprotection Chemistry. ACS Macro Letters, 2014, 3, 534-539.	4.8	37
82	A novel supramolecular graft copolymer via cucurbit[8]uril-based complexation and its self-assembly. Chinese Chemical Letters, 2013, 24, 568-572.	9.0	19
83	Progressive Macromolecular Selfâ€Assembly: From Biomimetic Chemistry to Bioâ€Inspired Materials. Advanced Materials, 2013, 25, 5215-5256.	21.0	210
84	Dual Molecular Recognition Leading to a Protein–Polymer Conjugate and Further Self-Assembly. ACS Macro Letters, 2013, 2, 278-283.	4.8	46
85	Hydrogels locked by molecular recognition aiming at responsiveness and functionality. Polymer Chemistry, 2013, 4, 1733-1745.	3.9	60
86	Nonâ€covalent Sugar Modification and Selfâ€assembly of Fluorous Gold Nanoparticles Driven by Fluorous Interaction. Chinese Journal of Chemistry, 2013, 31, 695-700.	4.9	6
87	Reversible vesicles of supramolecular hybrid nanoparticles. Soft Matter, 2012, 8, 3300.	2.7	22
88	Synchronous One-Pot (SOP) synthesis of hybrid structures: Metal nanoparticles in self-assemblies of amphiphilic calix[6]biscrowns. Journal of Colloid and Interface Science, 2012, 383, 82-88.	9.4	7
89	A new story of cyclodextrin as a bulky pendent group causing uncommon behaviour to random copolymers in solution. Polymer Chemistry, 2012, 3, 954.	3.9	15
90	Polymeric vesicles mimicking glycocalyx (PV-Gx) for studying carbohydrate–protein interactions in solution. Polymer Chemistry, 2012, 3, 1560.	3.9	39

#	Article	IF	CITATIONS
91	Electrochemically sensitive supra-crosslink and its corresponding hydrogel. Science China Chemistry, 2012, 55, 836-843.	8.2	9
92	Dual Responsive Supramolecular Hydrogel with Electrochemical Activity. Langmuir, 2011, 27, 9602-9608.	3.5	90
93	Cyclodextrin-based inclusion complexation bridging supramolecular chemistry and macromolecular self-assembly. Chemical Society Reviews, 2011, 40, 2254.	38.1	758
94	Pseudopolyrotaxanes on Inorganic Nanoplatelets and their Supramolecular Hydrogels. Langmuir, 2011, 27, 12650-12656.	3.5	26
95	Supramolecular Hybrid Hydrogels from Noncovalently Functionalized Graphene with Block Copolymers. Macromolecules, 2011, 44, 7682-7691.	4.8	161
96	Structural factors of amphiphilic calix[6]biscrowns affecting their vesicle–nanotube transitions in self-assembly. Journal of Materials Chemistry, 2011, 21, 13262.	6.7	19
97	Does PNIPAM block really retard the micelle-to-vesicle transition of its copolymer?. Polymer, 2011, 52, 3647-3654.	3.8	39
98	Photoresponsive Pseudopolyrotaxane Hydrogels Based on Competition of Host–Guest Interactions. Angewandte Chemie - International Edition, 2010, 49, 4409-4413.	13.8	285
99	Dual Stimuli-Responsive Supramolecular Hydrogel Based on Hybrid Inclusion Complex (HIC). Macromolecules, 2010, 43, 8086-8093.	4.8	113
100	Molecular binding behaviours of bile salts by bridged and metallobridged bis(β-cyclodextrin)s with naphthalenecarboxyl linkers. Supramolecular Chemistry, 2009, 21, 409-415.	1.2	7
101	Synthesis of Fluorous Tags for Incorporation of Reducing Sugars into a Quantitative Microarray Platform. Organic Letters, 2008, 10, 785-788.	4.6	64
102	Bundle-Shaped Cyclodextrinâ^'Tb Nano-Supramolecular Assembly Mediated by C60:Â Intramolecular Energy Transfer. Nano Letters, 2006, 6, 2196-2200.	9.1	32
103	Secondary assembly of bile salts mediated by β-cyclodextrin–terbium(III) complex. Bioorganic and Medicinal Chemistry, 2006, 14, 6615-6620.	3.0	8
104	Inclusion complexes of azadirachtin with native and methylated cyclodextrins: solubilization and binding ability. Bioorganic and Medicinal Chemistry, 2005, 13, 4037-4042.	3.0	52
105	Cyclodextrins as carriers for cinchona alkaloids: a pH-responsive selective binding system. Organic and Biomolecular Chemistry, 2005, 3, 2519.	2.8	29
106	Inclusion complexes of paclitaxel and oligo(ethylenediamino) bridged bis(β-cyclodextrin)s: solubilization and antitumor activity. Bioorganic and Medicinal Chemistry, 2004, 12, 5767-5775.	3.0	47
107	Interaction between β-cyclodextrin and 1,10-phenanthroline: uncommon 2:3 inclusion complex in the solid state. Carbohydrate Research, 2004, 339, 1649-1654.	2.3	16
108	Binding Behavior of Aliphatic Oligopeptides by Bridged and Metallobridged Bis(β-cyclodextrin)s Bearing an Oxamido Bis(2-benzoic) Carboxyl Linker. Bioconjugate Chemistry, 2004, 15, 1236-1245.	3.6	24

#	Article	IF	CITATIONS
109	Molecular Binding Behavior of Pyridine-2,6-dicarboxamide-Bridged Bis(β-cyclodextrin) with Oligopeptides:  Switchable Molecular Binding Mode. Bioconjugate Chemistry, 2004, 15, 300-306.	3.6	25
110	Inclusion Complexation and Solubilization of Paclitaxel by Bridged Bis(β-cyclodextrin)s Containing a Tetraethylenepentaamino Spacer. Journal of Medicinal Chemistry, 2003, 46, 4634-4637.	6.4	67
111	Synthesis of novel indolyl modified β-cyclodextrins and their molecular recognition behavior controlled by the solution's pH value. Perkin Transactions II RSC, 2002, , 463-469.	1.1	6