Stephen B Cronin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1000127/publications.pdf

Version: 2024-02-01

205 papers 11,916 citations

51 h-index 28297 105 g-index

211 all docs

211 docs citations

times ranked

211

16776 citing authors

#	Article	IF	CITATIONS
1	In Situ Investigation of Ultrafast Dynamics of Hot Electron-Driven Photocatalysis in Plasmon-Resonant Grating Structures. Journal of the American Chemical Society, 2022, 144, 3517-3526.	13.7	20
2	Transient plasma-enhanced remediation of nanoscale particulate matter in restaurant smoke emissions via electrostatic precipitation. Particuology, 2021, 55, 43-47.	3.6	5
3	Increasing the Hotâ€Electron Driven Hydrogen Evolution Reaction Rate on a Metalâ€Free Graphene Electrode. Advanced Materials Interfaces, 2021, 8, 2001706.	3.7	3
4	Enhanced Plasma Generation from Metal Nanostructures via Photoexcited Hot Electrons. Journal of Physical Chemistry C, 2021, 125, 6800-6804.	3.1	6
5	Monitoring Reaction Intermediates in Plasma-Driven SO ₂ , NO, and NO ₂ Remediation Chemistry Using In Situ SERS Spectroscopy. Analytical Chemistry, 2021, 93, 6421-6427.	6.5	8
6	Asymmetric response of interfacial water to applied electric fields. Nature, 2021, 594, 62-65.	27.8	75
7	Nanoscale TiO ₂ Protection Layer Enhances the Built-In Field and Charge Separation Performance of GaP Photoelectrodes. Nano Letters, 2021, 21, 8017-8024.	9.1	6
8	Hot Electron Plasmon-Resonant Grating Structures for Enhanced Photochemistry: A Theoretical Study. Crystals, 2021, 11, 118.	2.2	4
9	CO ₂ Reduction to Higher Hydrocarbons by Plasma Discharge in Carbonated Water. ACS Energy Letters, 2021, 6, 3924-3930.	17.4	7
10	Voltage-induced modulation in the charge state of Si-vacancy defects in diamond using high voltage nanosecond pulses. Applied Physics Letters, 2021, 119, .	3.3	1
11	Plasma-enhanced NOx remediation using nanosecond pulsed discharges in a water aerosol matrix. Fuel Processing Technology, 2020, 208, 106521.	7.2	7
12	Probing the Mechanisms of Strong Fluorescence Enhancement in Plasmonic Nanogaps with Sub-nanometer Precision. ACS Nano, 2020, 14, 14769-14778.	14.6	33
13	Plasma-enhanced SO2 remediation in a humidified gas matrix: A potential strategy for the continued burning of high sulfur bunker fuel. Fuel, 2020, 274, 117810.	6.4	2
14	Direct Measurement of Water-Assisted Ion Desorption and Solvation on Isolated Carbon Nanotubes. ACS Nano, 2020, 14, 16854-16863.	14.6	1
15	Formation of Brightly Luminescent MoS ₂ Nanoislands from Multilayer Flakes via Plasma Treatment and Laser Exposure. ACS Omega, 2020, 5, 20543-20547.	3.5	2
16	Broadband electroluminescence from reverse breakdown in individual suspended carbon nanotube pn-junctions. Nano Research, 2020, 13, 2857-2861.	10.4	1
17	Enhanced Low-Temperature Thermoelectric Performance in (PbSe) $<$ sub> $1+\hat{l}'<$ sub> $(VSe<$ sub> $2<$ sub> $1<$ sub> $1<$ heterostructures due to Highly Correlated Electrons in Charge Density Waves. Nano Letters, 2020, 20, 8008-8014.	9.1	6
18	Low Temperature Growth of Crystalline Semiconductors on Nonepitaxial Substrates. Advanced Materials Interfaces, 2020, 7, 1902191.	3.7	3

#	Article	IF	CITATIONS
19	A Review of Diverse Academic Research in Nanosecond Pulsed Power and Plasma Science. IEEE Transactions on Plasma Science, 2020, 48, 742-748.	1.3	9
20	Hot Electron Driven Photocatalysis on Plasmon-Resonant Grating Nanostructures. ACS Applied Materials & Samp; Interfaces, 2020, 12, 17459-17465.	8.0	12
21	(Photo)Electrocatalytic CO ₂ Reduction at the Defective Anatase TiO ₂ (101) Surface. ACS Catalysis, 2020, 10, 4048-4058.	11.2	42
22	Monitoring Local Electric Fields using Stark Shifts on Napthyl Nitrile-Functionalized Silicon Photoelectrodes. Journal of Physical Chemistry C, 2020, 124, 17000-17005.	3.1	4
23	Auger Suppression of Incandescence in Individual Suspended Carbon Nanotube pn-Junctions. ACS Applied Materials & Samp; Interfaces, 2020, 12, 11907-11912.	8.0	1
24	Tunable Onset of Hydrogen Evolution in Graphene with Hot Electrons. Nano Letters, 2020, 20, 1791-1799.	9.1	6
25	Stacking Independence and Resonant Interlayer Excitation of Monolayer WSe ₂ /MoSe ₂ Heterostructures for Photocatalytic Energy Conversion. ACS Applied Nano Materials, 2020, 3, 1175-1181.	5.0	7
26	Nanoparticle-Enhanced Plasma Discharge Using Nanosecond High-Voltage Pulses. Journal of Physical Chemistry C, 2020, 124, 7487-7491.	3.1	7
27	Au Nanoparticle Enhancement of Plasma-Driven Methane Conversion into Higher Order Hydrocarbons via Hot Electrons. ACS Applied Nano Materials, 2020, 3, 12388-12393.	5.0	3
28	Ultrafast Dynamics of Hot Electrons in Nanostructures: Distinguishing the Influence on Interband and Plasmon Resonances. ACS Photonics, 2019, 6, 2295-2302.	6.6	18
29	High Quantum Efficiency Hot Electron Electrochemistry. Nano Letters, 2019, 19, 6227-6234.	9.1	15
30	Measuring nanoscale thermal gradients in suspended MoS2 with STEM-EELS. Applied Physics Letters, 2019, 115, .	3.3	9
31	Measuring Local Electric Fields and Local Charge Densities at Electrode Surfaces Using Graphene-Enhanced Raman Spectroscopy (GERS)-Based Stark-Shifts. ACS Applied Materials & Samp; Interfaces, 2019, 11, 36252-36258.	8.0	7
32	First results on transient plasma-based remediation of nanoscale particulate matter in restaurant smoke emissions. Environmental Research, 2019, 178, 108635.	7. 5	6
33	Hot electron-driven photocatalysis and transient absorption spectroscopy in plasmon resonant grating structures. Faraday Discussions, 2019, 214, 325-339.	3.2	17
34	New materials for hot electron generation: general discussion. Faraday Discussions, 2019, 214, 365-386.	3.2	9
35	Plasmon-Resonant Enhancement of Photocatalysis on Monolayer WSe ₂ . ACS Photonics, 2019, 6, 787-792.	6.6	43
36	Resonant and Selective Excitation of Photocatalytically Active Defect Sites in TiO ₂ . ACS Applied Materials & Interfaces, 2019, 11, 10351-10355.	8.0	1

3

#	Article	IF	Citations
37	Effects of Proton Radiation-Induced Defects on Optoelectronic Properties of MoS2. IEEE Transactions on Nuclear Science, 2019, 66, 413-419.	2.0	7
38	Drude Theory–Free Carrier Contribution to the Optical Properties. Graduate Texts in Physics, 2018, , 329-344.	0.2	5
39	Sensing local pH and ion concentration at graphene electrode surfaces using <i>in situ</i> Raman spectroscopy. Nanoscale, 2018, 10, 2398-2403.	5.6	15
40	Large Reduction of Hot Spot Temperature in Graphene Electronic Devices with Heat-Spreading Hexagonal Boron Nitride. ACS Applied Materials & Samp; Interfaces, 2018, 10, 11101-11107.	8.0	33
41	Plasmon resonant amplification of a hot electron-driven photodiode. Nano Research, 2018, 11, 2310-2314.	10.4	9
42	Ultra-Low Power Light Emission via Avalanche and Sub-avalanche Breakdown in Suspended Carbon Nanotubes. ACS Photonics, 2018, 5, 4432-4436.	6.6	2
43	Enhanced Cross-Plane Thermoelectric Transport of Rotationally Disordered SnSe2 via Se-Vapor Annealing. Nano Letters, 2018, 18, 6876-6881.	9.1	13
44	Monitoring Local Electric Fields at Electrode Surfaces Using Surface Enhanced Raman Scattering-Based Stark-Shift Spectroscopy during Hydrogen Evolution Reactions. ACS Applied Materials & Diteriaces, 2018, 10, 33678-33683.	8.0	43
45	Plasmon resonant amplification of hot electron-driven photocatalysis. Applied Physics Letters, 2018, 113, .	3.3	14
46	Defect-Induced Photoluminescence Enhancement and Corresponding Transport Degradation in Individual Suspended Carbon Nanotubes. Physical Review Applied, 2018, 9, .	3.8	2
47	Confined Liquid-Phase Growth of Crystalline Compound Semiconductors on Any Substrate. ACS Nano, 2018, 12, 5158-5167.	14.6	19
48	Mid-wave and Long-Wave Infrared Linear Dichroism in a Hexagonal Perovskite Chalcogenide. Chemistry of Materials, 2018, 30, 4897-4901.	6.7	19
49	Optimal Bandgap in a 2D Ruddlesden–Popper Perovskite Chalcogenide for Single-Junction Solar Cells. Chemistry of Materials, 2018, 30, 4882-4886.	6.7	49
50	Recent Progress on Stability and Passivation of Black Phosphorus. Advanced Materials, 2018, 30, e1704749.	21.0	248
51	Near-Field Surface Waves in Few-Layer MoS ₂ . ACS Photonics, 2018, 5, 2106-2112.	6.6	37
52	Enhanced thermoelectric efficiency in topological insulator Bi2Te3 nanoplates via atomic layer deposition-based surface passivation. Applied Physics Letters, 2018, 113, .	3.3	16
53	Giant optical anisotropy in a quasi-one-dimensional crystal. Nature Photonics, 2018, 12, 392-396.	31.4	269
54	Hot electron-driven photocatalytic water splitting. Physical Chemistry Chemical Physics, 2017, 19, 2877-2881.	2.8	37

#	Article	IF	Citations
55	Broadband terahertz modulation in electrostatically-doped artificial trilayer graphene. Nanoscale, 2017, 9, 1721-1726.	5.6	8
56	Effects of basal-plane thermal conductivity and interface thermal conductance on the hot spot temperature in graphene electronic devices. Applied Physics Letters, 2017, 110, 073104.	3.3	17
57	Cross-Plane Seebeck Coefficient Measurement of Misfit Layered Compounds (SnSe) $<$ sub $<$ i> $>$ (i) $<$ /sub $>$ (TiSe $<$ sub $>$ 2 $<$ /sub $>$) $<$ sub $>$ (i) $<$ /sub $>$ (i) $<$ 1,3,4,5). Nano Letters, 2017, 17, 1978-1986.	9.1	25
58	Demonstration of enhanced carrier transport, charge separation, and long-term stability for photocatalytic water splitting by a rapid hot pressing process. Journal of Materials Chemistry A, 2017, 5, 10687-10695.	10.3	8
59	Probing Gap Plasmons Down to Subnanometer Scales Using Collapsible Nanofingers. ACS Nano, 2017, 11, 5836-5843.	14.6	35
60	Radiation-induced direct bandgap transition in few-layer MoS2. Applied Physics Letters, 2017, 111, 131101.	3.3	26
61	Cross-plane Thermoelectric and Thermionic Transport across Au/h-BN/Graphene Heterostructures. Scientific Reports, 2017, 7, 14148.	3.3	18
62	Avalanche Photoemission in Suspended Carbon Nanotubes: Light without Heat. ACS Photonics, 2017, 4, 2706-2710.	6.6	4
63	Prevention of surface recombination by electrochemical tuning of TiO2-passivated photocatalysts. Applied Physics Letters, 2017, 111, 141603.	3.3	2
64	Atomically Thin Femtojoule Memristive Device. Advanced Materials, 2017, 29, 1703232.	21.0	147
65	Taguchi analysis of parameters for small-diameter single wall carbon nanotube growth. AIP Advances, 2017, 7, 095301.	1.3	2
66	Suspended individual SWCNT characterization via bottom gate FET configuration. Microwave and Optical Technology Letters, 2017, 59, 2610-2614.	1.4	2
67	Independent tuning of work function and field enhancement factor in hybrid lanthanum hexaboride-graphene-silicon field emitters. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2017, 35, 062202.	1.2	6
68	Highly efficient, high speed vertical photodiodes based on few-layer MoS ₂ . 2D Materials, 2017, 4, 015004.	4.4	22
69	Nanoscale Mapping of Interfacial Electrical Transport in Graphene-MoS 2 Heterostructures with STEM-EBIC. Microscopy and Microanalysis, 2016, 22, 1552-1553.	0.4	0
70	Layer Control of WSe ₂ <i>via</i> Selective Surface Layer Oxidation. ACS Nano, 2016, 10, 6836-6842.	14.6	77
71	Nanoscopy of Black Phosphorus Degradation. Advanced Materials Interfaces, 2016, 3, 1600121.	3.7	67
72	Enhanced photoluminescence in air-suspended carbon nanotubes by oxygen doping. Applied Physics Letters, 2016, 109, .	3 . 3	7

#	Article	IF	CITATIONS
73	Single-ion adsorption and switching in carbon nanotubes. Nature Communications, 2016, 7, 10475.	12.8	23
74	Doping concentration dependence of the photoluminescence spectra of $i>n-type$ GaAs nanowires. Applied Physics Letters, 2016, 108, .	3.3	46
75	Charge neutral MoS2 field effect transistors through oxygen plasma treatment. Journal of Applied Physics, 2016, 120, .	2.5	20
76	Nanoscopy reveals surface-metallic black phosphorus. Light: Science and Applications, 2016, 5, e16162-e16162.	16.6	37
77	Black Phosphorous: Nanoscopy of Black Phosphorus Degradation (Adv. Mater. Interfaces 12/2016). Advanced Materials Interfaces, 2016, 3, .	3.7	2
78	Correlation of Ti3+ states with photocatalytic enhancement in TiO2-passivated p-GaAs. Journal of Catalysis, 2016, 337, 133-137.	6.2	25
79	Strong Circularly Polarized Photoluminescence from Multilayer MoS ₂ Through Plasma Driven Direct-Gap Transition. ACS Photonics, 2016, 3, 310-314.	6.6	12
80	Imaging interfacial electrical transport in graphene–MoS2 heterostructures with electron-beam-induced-currents. Applied Physics Letters, 2015, 107, 223104.	3.3	18
81	Bulk direct band gap MoS <inf>2</inf> by plasma induced layer decoupling. , 2015, , .		0
82	Frontispiece: Enhanced Photocatalytic Reduction of CO2to CO through TiO2Passivation of InP in Ionic Liquids. Chemistry - A European Journal, 2015, 21, n/a-n/a.	3.3	0
83	Enhanced Photocatalytic Reduction of CO ₂ to CO through TiO ₂ Passivation of InP in Ionic Liquids. Chemistry - A European Journal, 2015, 21, 13502-13507.	3.3	52
84	Black Arsenic–Phosphorus: Layered Anisotropic Infrared Semiconductors with Highly Tunable Compositions and Properties. Advanced Materials, 2015, 27, 4423-4429.	21.0	378
85	Applications of Plasmon Energy Expansion Thermometry. Microscopy and Microanalysis, 2015, 21, 663-664.	0.4	0
86	Study of the Plasmon Energy Transfer Processes in Dye Sensitized Solar Cells. Journal of Nanomaterials, 2015, 2015, 1-6.	2.7	14
87	Introduction to Plasmon Energy Expansion Thermometry. Microscopy and Microanalysis, 2015, 21, 1907-1908.	0.4	0
88	Indirect Band Gap Emission by Hot Electron Injection in Metal/MoS ₂ and Metal/WSe ₂ Heterojunctions. Nano Letters, 2015, 15, 3977-3982.	9.1	60
89	Competing Photocurrent Mechanisms in Quasiâ€Metallic Carbon Nanotube <i>pn</i> Devices. Small, 2015, 11, 3119-3123.	10.0	10
90	Nanostructured Silicon Photocathodes for Solar Water Splitting Patterned by the Self-Assembly of Lamellar Block Copolymers. ACS Applied Materials & Samp; Interfaces, 2015, 7, 26043-26049.	8.0	19

#	Article	IF	Citations
91	Radiation Induced Single Ion Surface Effects in Nanoelectronic Circuits. IEEE Transactions on Nuclear Science, 2015, 62, 2926-2932.	2.0	2
92	Effects of Surface Passivation on Twin-Free GaAs Nanosheets. ACS Nano, 2015, 9, 1336-1340.	14.6	18
93	Nanoscale temperature mapping in operating microelectronic devices. Science, 2015, 347, 629-632.	12.6	253
94	Direct Bandgap Transition in Manyâ€Layer MoS ₂ by Plasmaâ€Induced Layer Decoupling. Advanced Materials, 2015, 27, 1573-1578.	21.0	102
95	Observation of Asymmetric Nanoscale Optical Cavity in GaAs Nanosheets. ACS Photonics, 2015, 2, 1124-1128.	6.6	7
96	Thermoacoustic Transduction in Individual Suspended Carbon Nanotubes. ACS Nano, 2015, 9, 5372-5376.	14.6	25
97	Photocurrent spectroscopy of exciton and free particle optical transitions in suspended carbon nanotube pn-junctions. Applied Physics Letters, 2015, 107, 053107.	3.3	13
98	Tandem Solar Cells Using GaAs Nanowires on Si: Design, Fabrication, and Observation of Voltage Addition. Nano Letters, 2015, 15, 7217-7224.	9.1	114
99	A Comparison of Photocurrent Mechanisms in Quasi-Metallic and Semiconducting Carbon Nanotube pn-Junctions. ACS Nano, 2015, 9, 11551-11556.	14.6	15
100	Artificial Photosynthesis on TiO ₂ -Passivated InP Nanopillars. Nano Letters, 2015, 15, 6177-6181.	9.1	86
101	Microscopic Study of Atomic Layer Deposition of TiO ₂ on GaAs and Its Photocatalytic Application. Chemistry of Materials, 2015, 27, 7977-7981.	6.7	27
102	Thermoelectric transport across graphene/hexagonal boron nitride/graphene heterostructures. Nano Research, 2015, 8, 666-672.	10.4	95
103	Single Event Effects in Carbon Nanotube-Based Field Effect Transistors Under Energetic Particle Radiation. IEEE Transactions on Nuclear Science, 2014, 61, 2839-2846.	2.0	8
104	Plasmonic mode mixing in nanoparticle dimers with nm-separations via substrate-mediated coupling. Nano Research, 2014, 7, 1344-1354.	10.4	13
105	Optical and electrical characterization of surface passivated GaAs nanostructures. Proceedings of SPIE, 2014, , .	0.8	0
106	Formation of Fabry-Perot cavity in one-dimensional and two-dimensional GaAs nanostructures. Proceedings of SPIE, 2014, , .	0.8	1
107	Carrier dynamics and doping profiles in GaAs nanosheets. Nano Research, 2014, 7, 163-170.	10.4	14
108	Nonideal Diode Behavior and Bandgap Renormalization in Carbon Nanotube p-n Junctions. IEEE Nanotechnology Magazine, 2014, 13, 41-45.	2.0	9

#	Article	IF	Citations
109	Electrical Transport and Channel Length Modulation in Semiconducting Carbon Nanotube Field Effect Transistors. IEEE Nanotechnology Magazine, 2014, 13, 176-181.	2.0	9
110	Thermal interface conductance across a graphene/hexagonal boron nitride heterojunction. Applied Physics Letters, 2014, 104, .	3.3	76
111	Clamping Instability and van der Waals Forces in Carbon Nanotube Mechanical Resonators. Nano Letters, 2014, 14, 2426-2430.	9.1	24
112	Computational modeling of channel length modulation in carbon nanotube field effect transistors. , 2014, , .		0
113	Plasmon-enhanced water splitting on TiO2-passivated GaP photocatalysts. Physical Chemistry Chemical Physics, 2014, 16, 3115-3121.	2.8	49
114	Plasmon-enhanced photocatalytic water purification. Physical Chemistry Chemical Physics, 2014, 16, 15111.	2.8	38
115	CO ₂ Reduction to Methanol on TiO ₂ -Passivated GaP Photocatalysts. ACS Catalysis, 2014, 4, 3512-3516.	11.2	130
116	Evaluation of gold-decorated halloysite nanotubes as plasmonic photocatalysts. Catalysis Communications, 2014, 56, 115-118.	3.3	27
117	Enhanced photocurrent and photoluminescence spectra in MoS2 under ionic liquid gating. Nano Research, 2014, 7, 973-980.	10.4	41
118	Effects of Parylene Coating on Electron Transport in Pristine Suspended Carbon Nanotube Field-Effect-Transistors. IEEE Transactions on Electron Devices, 2014, 61, 3539-3545.	3.0	2
119	Enhanced Fabry-Perot resonance in GaAs nanowires through local field enhancement and surface passivation. Nano Research, 2014, 7, 1146-1153.	10.4	17
120	Evidence for structural phase transitions and large effective band gaps in quasi-metallic ultra-clean suspended carbon nanotubes. Nano Research, 2013, 6, 736-744.	10.4	5
121	Zener Tunneling and Photocurrent Generation in Quasi-Metallic Carbon Nanotube pn-Devices. Nano Letters, 2013, 13, 5129-5134.	9.1	13
122	A microscopic study of strongly plasmonic Au and Ag island thin films. Journal of Applied Physics, 2013, 113, .	2.5	64
123	A Review of Surface Plasmon Resonanceâ€Enhanced Photocatalysis. Advanced Functional Materials, 2013, 23, 1612-1619.	14.9	1,307
124	Twin-Free GaAs Nanosheets by Selective Area Growth: Implications for Defect-Free Nanostructures. Nano Letters, 2013, 13, 2506-2515.	9.1	68
125	Carbon-doped GaAs single junction solar microcells grown in multilayer epitaxial assemblies. Applied Physics Letters, 2013, 102, 253902.	3.3	17
126	Gate tunable graphene-silicon Ohmic/Schottky contacts. Applied Physics Letters, 2012, 101, .	3.3	40

#	Article	IF	CITATIONS
127	Plasmonic hot spots: nanogap enhancement vs focusing effects from surrounding nanoparticles. Optics Express, 2012, 20, 14656.	3.4	33
128	Electrical and Optical Characterization of Surface Passivation in GaAs Nanowires. Nano Letters, 2012, 12, 4484-4489.	9.1	183
129	The Influence of Substrate in Determining the Band Gap of Metallic Carbon Nanotubes. Nano Letters, 2012, 12, 4843-4847.	9.1	28
130	Strain-induced D band observed in carbon nanotubes. Nano Research, 2012, 5, 854-862.	10.4	23
131	Raman spectroscopy of substrate-induced compression and substrate doping in thermally cycled graphene. Physical Review B, 2012, 85, .	3.2	26
132	Pronounced electron-phonon interactions in ultraclean suspended carbon nanotubes. Physical Review B, 2012, 86, .	3.2	4
133	Stacking-dependent band gap and quantum transport in trilayer graphene. Nature Physics, 2011, 7, 948-952.	16.7	415
134	Memristive Behavior Observed in a Defected Single-Walled Carbon Nanotube. IEEE Nanotechnology Magazine, 2011, 10, 582-586.	2.0	5
135	Low-Frequency Acoustic Phonon Temperature Distribution in Electrically Biased Graphene. Nano Letters, 2011, 11, 85-90.	9.1	63
136	Thermal Emission Spectra from Individual Suspended Carbon Nanotubes. ACS Nano, 2011, 5, 4634-4640.	14.6	40
137	Plasmon resonant enhancement of dye sensitized solar cells. Energy and Environmental Science, 2011, 4, 4650.	30.8	85
138	Plasmon Resonant Enhancement of Photocatalytic Water Splitting Under Visible Illumination. Nano Letters, 2011, 11, 1111-1116.	9.1	934
139	Direct observation of heat dissipation in individual suspended carbon nanotubes using a two-laser technique. Journal of Applied Physics, 2011, 110, .	2.5	52
140	Graphene-Silicon Schottky Diodes. Nano Letters, 2011, 11, 1863-1867.	9.1	435
141	Photocatalytic Conversion of CO ₂ to Hydrocarbon Fuels via Plasmon-Enhanced Absorption and Metallic Interband Transitions. ACS Catalysis, 2011, 1, 929-936.	11.2	498
142	Plasmonic enhancement of photocatalytic decomposition of methyl orange under visible light. Journal of Catalysis, 2011, 277, 149-153.	6.2	171
143	Electromechanical resonance behavior of suspended single-walled carbon nanotubes under high bias voltages. Journal of Micromechanics and Microengineering, 2011, 21, 085008.	2.6	2
144	Plasmon Resonant Enhancement of Photocatalytic Solar Fuel Production. ECS Transactions, 2011, 41, 197-205.	0.5	2

#	Article	IF	Citations
145	Microwave properties of suspended single-walled carbon nanotubes with a field-effect transistor configuration. , $2011, , .$		4
146	Tailoring the crystal structure of individual silicon nanowires by polarized laser annealing. Nanotechnology, 2011, 22, 305709.	2.6	5
147	Iteratively optimized nonperiodic plasmon resonant nanostructures., 2010,,.		0
148	Exploring optimized configurations of plasmonic nanoparticles. Proceedings of SPIE, 2010, , .	0.8	0
149	Optical manipulation of plasmonic nanoparticles, bubble formation and patterning of SERS aggregates. Nanotechnology, 2010, 21, 105304.	2.6	29
150	A New Lower Limit for the Ultimate Breaking Strain of Carbon Nanotubes. ACS Nano, 2010, 4, 5095-5100.	14.6	64
151	Plasmon Resonant Enhancement of Carbon Monoxide Catalysis. Nano Letters, 2010, 10, 1314-1318.	9.1	163
152	Plasmonic Nanoparticle Arrays with Nanometer Separation for High-Performance SERS Substrates. Nano Letters, 2010, 10, 2749-2754.	9.1	231
153	The effect of gas environment on electrical heating in suspended carbon nanotubes. Journal of Applied Physics, 2010, 108, .	2.5	41
154	Iterative optimization of plasmon resonant nanostructures. Applied Physics Letters, 2009, 94, .	3.3	13
155	Large Modulations in the Intensity of Raman-Scattered Light from Pristine Carbon Nanotubes. Physical Review Letters, 2009, 103, 067401.	7.8	23
156	Top-down lithographic method for inducing strain in carbon nanotubes. Journal of Applied Physics, 2009, 106, 014306.	2.5	3
157	Cell kinase activity assay based on surface enhanced Raman spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2009, 73, 226-230.	3.9	15
158	Selective destruction of individual single walled carbon nanotubes by laser irradiation. Carbon, 2009, 47, 1292-1296.	10.3	20
159	Raman Spectroscopy of Ripple Formation in Suspended Graphene. Nano Letters, 2009, 9, 4172-4176.	9.1	108
160	Direct Observation of Bornâ^'Oppenheimer Approximation Breakdown in Carbon Nanotubes. Nano Letters, 2009, 9, 607-611.	9.1	40
161	Optical Absorption and Thermal Transport of Individual Suspended Carbon Nanotube Bundles. Nano Letters, 2009, 9, 590-594.	9.1	72
162	Spatially Resolved Temperature Measurements of Electrically Heated Carbon Nanotubes. Physical Review Letters, 2009, 102, 105501.	7.8	89

#	Article	IF	CITATIONS
163	Gate Voltage Controllable Non-Equilibrium and Non-Ohmic Behavior in Suspended Carbon Nanotubes. Nano Letters, 2009, 9, 2862-2866.	9.1	28
164	Scaling of exciton binding energy with external dielectric function in carbon nanotubes. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2375-2379.	2.7	11
165	Resonant micro-Raman spectroscopy of aligned single-walled carbon nanotubes on a-plane sapphire. Applied Physics Letters, 2008, 93, 123112.	3.3	9
166	Laser Directed Growth of Carbon-Based Nanostructures by Plasmon Resonant Chemical Vapor Deposition. Nano Letters, 2008, 8, 3278-3282.	9.1	43
167	Optical measurement of thermal transport in suspended carbon nanotubes. Applied Physics Letters, 2008, 92, .	3.3	91
168	Effect of nanotube-nanotube coupling on the radial breathing mode of carbon nanotubes. Physical Review B, 2008, 78, .	3.2	10
169	Optical Properties of Carbon Nanotubes Under Axial Strain. Journal of Nanoscience and Nanotechnology, 2008, 8, 122-130.	0.9	9
170	Surface-enhanced Raman spectroscopy and correlated scanning electron microscopy of individual carbon nanotubes. Applied Physics Letters, 2007, 91, 223105.	3.3	55
171	Rapid prototyping of three-dimensional microstructures from multiwalled carbon nanotubes. Applied Physics Letters, 2007, 91, 093121.	3.3	12
172	Direct Observation of Mode Selective Electronâ^'Phonon Coupling in Suspended Carbon Nanotubes. Nano Letters, 2007, 7, 3618-3622.	9.1	61
173	Screening of Excitons in Single, Suspended Carbon Nanotubes. Nano Letters, 2007, 7, 1485-1488.	9.1	81
174	Raman scattering of carbon nanotube bundles under axial strain and strain-induced debundling. Physical Review B, 2007, 75, .	3.2	44
175	Tunable Resonant Raman Scattering From Singly Resonant Single Wall Carbon Nanotubes. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12, 1083-1090.	2.9	11
176	Temperature Dependence of the Optical Transition Energies of Carbon Nanotubes: The Role of Electron-Phonon Coupling and Thermal Expansion. Physical Review Letters, 2006, 96, 127403.	7.8	75
177	Screening Of Excitons In Single, Suspended Carbon Nanotubes. , 2006, , .		0
178	Unperturbed Optical Transition Energies from Resonant Raman Scattering of Individual Suspended Single Wall Carbon Nanotubes., 2005, , LTuE2.		0
179	Strain-Induced Interference Effects on the Resonance Raman Cross Section of Carbon Nanotubes. Physical Review Letters, 2005, 95, 217403.	7.8	61
180	Measuring the Uniaxial Strain of Individual Single-Wall Carbon Nanotubes: Resonance Raman Spectra of Atomic-Force-Microscope Modified Single-Wall Nanotubes. Physical Review Letters, 2004, 93, 167401.	7.8	211

#	Article	IF	CITATIONS
181	Electrochemical gating of individual single-wall carbon nanotubes observed by electron transport measurements and resonant Raman spectroscopy. Applied Physics Letters, 2004, 84, 2052-2054.	3.3	66
182	Formation of Thick Porous Anodic Alumina Films and Nanowire Arrays on Silicon Wafers and Glass. Advanced Functional Materials, 2003, 13, 631-638.	14.9	240
183	Quantum size effects in IV–VI quantum wells. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 17, 313-315.	2.7	24
184	Effect of thickness on the thermoelectric properties of PbS thin films. Thin Solid Films, 2003, 423, 115-118.	1.8	32
185	Making electrical contacts to nanowires with a thick oxide coating. Nanotechnology, 2002, 13, 653-658.	2.6	124
186	Bismuth Nanowires for Potential Applications in Nanoscale Electronics Technology. Microscopy and Microanalysis, 2002, 8, 58-63.	0.4	22
187	Transport Properties and Observation of Semimetal-Semiconductor Transition in Bi-based Nanowires. Materials Research Society Symposia Proceedings, 2002, 737, 385.	0.1	1
188	Thermoelectric Nanowires By Template Synthesis: Fabrication, Contacts and Properties. Materials Research Society Symposia Proceedings, 2002, 739, 7241.	0.1	0
189	Semimetal–semiconductor transition in Bi1â^'xSbx alloy nanowires and their thermoelectric properties. Applied Physics Letters, 2002, 81, 2403-2405.	3.3	170
190	Quantum size effects in PbSe quantum wells. Applied Physics Letters, 2002, 80, 2690-2692.	3.3	67
191	4-Point Resistance Measurements of Individual Bi Nanowires. Materials Research Society Symposia Proceedings, 2001, 635, C5.7.1.	0.1	5
192	Electronic Properties of Bismuth Nanowires. Materials Research Society Symposia Proceedings, 2001, 679, 1.	0.1	1
193	Thermoelectric Transport Properties of Individual Bismuth Nanowires. Materials Research Society Symposia Proceedings, 2001, 691, 1.	0.1	0
194	Thermoelectric Properties of Bi1-xSbx Nanowire Arrays. Materials Research Society Symposia Proceedings, 2001, 691, 1.	0.1	1
195	Thermoelectric Nanowires by Electrochemical Deposition. Materials Research Society Symposia Proceedings, 2001, 691, 1.	0.1	2
196	Transport properties of Bilâ^'xSbx alloy nanowires synthesized by pressure injection. Applied Physics Letters, 2001, 79, 677-679.	3.3	49
197	Nanofabrication Using Self-Assembled Alumina Templates. Materials Research Society Symposia Proceedings, 2000, 636, 471.	0.1	8
198	Experimental proof-of-principle investigation of enhanced Z3DT in (001) oriented Si/Ge superlattices. Applied Physics Letters, 2000, 77, 1490-1492.	3.3	169

STEPHEN B CRONIN

#	Article	IF	CITATIONS
199	Transport properties of Bi nanowire arrays. Applied Physics Letters, 2000, 76, 3944-3946.	3.3	177
200	Bismuth nanowire arrays:â€fSynthesis and galvanomagnetic properties. Physical Review B, 2000, 61, 2921-2930.	3.2	329
201	Intersubband transitions in bismuth nanowires. Applied Physics Letters, 2000, 77, 4142-4144.	3.3	44
202	Carrier pocket engineering applied to "strained―Si/Ge superlattices to design useful thermoelectric materials. Applied Physics Letters, 1999, 75, 2438-2440.	3.3	94
203	Low-dimensional thermoelectric materials. Physics of the Solid State, 1999, 41, 679-682.	0.6	276
204	THE PROMISE OF LOW-DIMENSIONAL THERMOELECTRIC MATERIALS. Microscale Thermophysical Engineering, 1999, 3, 89-100.	1.2	103
205	Transport Measurements of Individual Bi Nanowires. Materials Research Society Symposia Proceedings, 1999, 582, 13.	0.1	1