Daniel Cardoso Moraes de Oliveira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2082167/publications.pdf

Version: 2024-02-01

567281 526287 1,258 15 27 108 citations h-index g-index papers 110 110 110 898 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Towards optimizing the execution of spark scientific workflows using machine learningâ€based parameter tuning. Concurrency Computation Practice and Experience, 2021, 33, e5972.	2.2	6
2	An incremental reinforcement learning scheduling strategy for dataâ€intensive scientific workflows in the cloud. Concurrency Computation Practice and Experience, 2021, 33, e6193.	2.2	0
3	Distributed in-memory data management for workflow executions. PeerJ Computer Science, 2021, 7, e527.	4.5	2
4	Provenance-and machine learning-based recommendation of parameter values in scientific workflows. PeerJ Computer Science, 2021, 7, e606.	4.5	0
5	Cache-aware scheduling of scientific workflows in a multisite cloud. Future Generation Computer Systems, 2021, 122, 172-186.	7.5	3
6	Provenance Supporting Hyperparameter Analysis in Deep Neural Networks. Lecture Notes in Computer Science, 2021, , 20-38.	1.3	3
7	BioProv - A provenance library for bioinformatics workflows. Journal of Open Source Software, 2021, 6, 3622.	4.6	1
8	Provenance-based fault tolerance technique recommendation for cloud-based scientific workflows: a practical approach. Cluster Computing, 2020, 23, 123-148.	5.0	11
9	Adding domain data to code profiling tools to debug workflow parallel execution. Future Generation Computer Systems, 2020, 110, 422-439.	7.5	2
10	A superpixel-driven deep learning approach for the analysis of dermatological wounds. Computer Methods and Programs in Biomedicine, 2020, 183, 105079.	4.7	27
11	OLAP parallel query processing in clouds with Câ€ParGRES. Concurrency Computation Practice and Experience, 2020, 32, e5590.	2.2	2
12	DfAnalyzer: Runtime dataflow analysis tool for Computational Science and Engineering applications. SoftwareX, 2020, 12, 100592.	2.6	9
13	BioinfoPortal: A scientific gateway for integrating bioinformatics applications on the Brazilian national high-performance computing network. Future Generation Computer Systems, 2020, 107, 192-214.	7.5	7
14	Capturing and Analyzing Provenance from Spark-based Scientific Workflows with SAMbA-RaP. Future Generation Computer Systems, 2020, 112, 658-669.	7.5	11
15	Some Branches May Bear Rotten Fruits: Diversity Browsing VP-Trees. Lecture Notes in Computer Science, 2020, , 140-154.	1.3	1
16	Towards Failure Prediction in Scientific Workflows Using Stochastic Petri Nets and Dynamic Logic. Communications in Computer and Information Science, 2020, , 449-456.	0.5	0
17	Distributed Caching of Scientific Workflows in Multisite Cloud. Lecture Notes in Computer Science, 2020, , 51-65.	1.3	4
18	A Classification of de Bruijn Graph Approaches for De Novo Fragment Assembly. Lecture Notes in Computer Science, 2020, , 1-12.	1.3	0

#	Article	IF	Citations
19	Performance Evaluation of Parallel Inference of Large Phylogenetic Trees in Santos Dumont Supercomputer: A Practical Approach. Communications in Computer and Information Science, 2020, , 448-463.	0.5	0
20	Efficient Execution of Scientific Workflows in the Cloud Through Adaptive Caching. Lecture Notes in Computer Science, 2020, , 41-66.	1.3	0
21	Experiencing DfAnalyzer for Runtime Analysis of Phylogenomic Dataflows. Lecture Notes in Computer Science, 2020, , 105-116.	1.3	0
22	Provenance Analytics for Workflow-Based Computational Experiments. ACM Computing Surveys, 2019, 51, 1-25.	23.0	18
23	Towards a Science Gateway for Bioinformatics: Experiences in the Brazilian System of High Performance Computing. , 2019, , .		1
24	A Reinforcement Learning Scheduling Strategy for Parallel Cloud-Based Workflows. , 2019, , .		8
25	A Two-Phase Learning Approach for the Segmentation of Dermatological Wounds. , 2019, , .		3
26	Polyflow., 2019,,.		5
27	ArrOW: Experiencing a Parallel Cloud-Based De Novo Assembler Workflow. , 2019, , .		0
28	A provenance-based heuristic for preserving results confidentiality in cloud-based scientific workflows. Future Generation Computer Systems, 2019, 97, 697-713.	7.5	4
29	Adaptive Caching for Data-Intensive Scientific Workflows in the Cloud. Lecture Notes in Computer Science, 2019, , 452-466.	1.3	14
30	A k–Skyband Approach for Feature Selection. Lecture Notes in Computer Science, 2019, , 160-168.	1.3	2
31	Eeny Meeny Miny Moe: Choosing the Fault Tolerance Technique for my Cloud Workflow. Communications in Computer and Information Science, 2018, , 321-336.	0.5	2
32	A Practical Roadmap for Provenance Capture and Data Analysis in Spark-Based Scientific Workflows. , 2018, , .		8
33	Exploring Diversified Similarity with Kundaha. , 2018, , .		3
34	Towards Safer (Smart) Cities: Discovering Urban Crime Patterns Using Logic-based Relational Machine Learning. , 2018, , .		6
35	Capturing Provenance for Runtime Data Analysis in Computational Science and Engineering Applications. Lecture Notes in Computer Science, 2018, , 183-187.	1.3	4
36	Dfanalyzer. Proceedings of the VLDB Endowment, 2018, 11, 2082-2085.	3.8	15

#	Article	IF	CITATIONS
37	Raw data queries during data-intensive parallel workflow execution. Future Generation Computer Systems, 2017, 75, 402-422.	7. 5	20
38	Oh Gosh!! Why is this game so hard? Identifying cycle patterns in 2D platform games using provenance data. Entertainment Computing, 2017, 19, 65-81.	2.9	4
39	Managing Provenance of Implicit Data Flows in Scientific Experiments. ACM Transactions on Internet Technology, 2017, 17, 1-22.	4.4	3
40	Deriving scientific workflows from algebraic experiment lines: A practical approach. Future Generation Computer Systems, 2017, 68, 111-127.	7.5	3
41	Towards preserving results confidentiality in cloud-based scientific workflows., 2017,,.		0
42	Clouds and Reproducibility: A Way to Go to Scientific Experiments?. Computer Communications and Networks, 2017, , 127-151.	0.8	3
43	Mirror Mirror on the Wall, How Do I Dimension My Cloud After All?. Computer Communications and Networks, 2017, , 27-58.	0.8	1
44	A Systematic Mapping of Software Requirements Negotiation Techniques. , 2017, , .		1
45	Enhancing Energy Production with Exascale HPC Methods. Communications in Computer and Information Science, 2017, , 233-246.	0.5	0
46	Analyzing related raw data files through dataflows. Concurrency Computation Practice and Experience, 2016, 28, 2528-2545.	2.2	10
47	A Dynamic Cloud Dimensioning Approach for Parallel Scientific Workflows: a Case Study in the Comparative Genomics Domain. Journal of Grid Computing, 2016, 14, 443-461.	3.9	5
48	Multi-objective scheduling of Scientific Workflows in multisite clouds. Future Generation Computer Systems, 2016, 63, 76-95.	7.5	46
49	Analyzing Provenance Across Heterogeneous Provenance Graphs. Lecture Notes in Computer Science, 2016, , 57-70.	1.3	9
50	Dynamic steering of HPC scientific workflows: A survey. Future Generation Computer Systems, 2015, 46, 100-113.	7.5	46
51	Data Analytics in Bioinformatics: Data Science in Practice for Genomics Analysis Workflows., 2015,,.		6
52	Running Multi-relational Data Mining Processes in the Cloud: A Practical Approach for Social Networks. Communications in Computer and Information Science, 2015, , 3-18.	0.5	0
53	Handling flash-crowd events to improve the performance of web applications. , 2015, , .		8
54	Optimizing virtual machine allocation for parallel scientific workflows in federated clouds. Future Generation Computer Systems, 2015, 46, 51-68.	7.5	46

#	Article	IF	CITATIONS
55	Towards Supporting Provenance Gathering and Querying in Different Database Approaches. Lecture Notes in Computer Science, 2015, , 254-257.	1.3	3
56	Experiencing PROV-Wf for Provenance Interoperability in SWfMSs. Lecture Notes in Computer Science, 2015, , 294-296.	1.3	3
57	Exploiting the Parallel Execution of Homology Workflow Alternatives in HPC Compute Clouds. Lecture Notes in Computer Science, 2015, , 336-350.	1.3	1
58	Evaluating Grasp-based cloud dimensioning for comparative genomics: A practical approach. , 2014, , .		8
59	Exploratory Analysis of Raw Data Files through Dataflows. , 2014, , .		5
60	Evaluation between humans and affective NPC in digital gaming scenario., 2014,,.		0
61	Towards an Adaptive and Distributed Architecture for Managing Workflow Provenance Data. , 2014, , .		6
62	Exploring Large Scale Receptor-Ligand Pairs in Molecular Docking Workflows in HPC Clouds. , 2014, , .		11
63	SciLightning: A Cloud Provenance-Based Event Notification for Parallel Workflows. Lecture Notes in Computer Science, 2014, , 352-365.	1.3	4
64	A Non-intrusive Approach for 2D Platform Game Design Analysis Based on Provenance Data Extracted from Game Streaming. , 2014, , .		10
65	Dimensioning the virtual cluster for parallel scientific workflows in clouds. , 2013, , .		11
66	Performance evaluation of parallel strategies in public clouds: A study with phylogenomic workflows. Future Generation Computer Systems, 2013, 29, 1816-1825.	7.5	24
67	Designing a parallel cloud based comparative genomics workflow to improve phylogenetic analyses. Future Generation Computer Systems, 2013, 29, 2205-2219.	7.5	12
68	Chiron: a parallel engine for algebraic scientific workflows. Concurrency Computation Practice and Experience, 2013, 25, 2327-2341.	2.2	43
69	Runtime Dynamic Structural Changes of Scientific Workflows in Clouds. , 2013, , .		5
70	User-steering of HPC workflows. , 2013, , .		14
71	Capturing and querying workflow runtime provenance with PROV. , 2013, , .		43
72	Provenance traces from Chiron parallel workflow engine. , 2013, , .		3

#	Article	IF	Citations
73	Algebraic dataflows for big data analysis. , 2013, , .		13
74	A Forecasting Method for Fertilizers Consumption in Brazil. International Journal of Agricultural and Environmental Information Systems, 2013, 4, 23-36.	2.0	5
75	An Artificial Emotional Agent-Based Architecture for Games Simulation. Lecture Notes in Computer Science, 2013, , 156-159.	1.3	0
76	Handling Failures in Parallel Scientific Workflows Using Clouds. , 2012, , .		6
77	Evaluating parameter sweep workflows in high performance computing. , 2012, , .		9
78	A Provenance-based Adaptive Scheduling Heuristic for Parallel Scientific Workflows in Clouds. Journal of Grid Computing, 2012, 10, 521-552.	3.9	79
79	Discovering drug targets for neglected diseases using a pharmacophylogenomic cloud workflow. , 2012, , .		5
80	UNCERTAINTY QUANTIFICATION IN COMPUTATIONAL PREDICTIVE MODELS FOR FLUID DYNAMICS USING A WORKFLOW MANAGEMENT ENGINE. , 2012, 2, 53-71.		12
81	An adaptive parallel execution strategy for cloudâ€based scientific workflows. Concurrency Computation Practice and Experience, 2012, 24, 1531-1550.	2.2	31
82	Athena: Text Mining Based Discovery of Scientific Workflows in Disperse Repositories. Lecture Notes in Computer Science, 2012, , 104-121.	1.3	4
83	Exploring Molecular Evolution Reconstruction Using a Parallel Cloud Based Scientific Workflow. Lecture Notes in Computer Science, 2012, , 179-191.	1.3	15
84	Using Domain-Specific Data to Enhance Scientific Workflow Steering Queries. Lecture Notes in Computer Science, 2012, , 152-167.	1.3	8
85	Enabling Re-executions of Parallel Scientific Workflows Using Runtime Provenance Data. Lecture Notes in Computer Science, 2012, , 229-232.	1.3	7
86	Optimizing Phylogenetic Analysis Using SciHmm Cloud-based Scientific Workflow. , 2011, , .		15
87	A Performance Evaluation of X-Ray Crystallography Scientific Workflow Using SciCumulus. , 2011, , .		10
88	Towards a Cost Model for Scheduling Scientific Workflows Activities in Cloud Environments. , 2011, , .		12
89	Supporting dynamic parameter sweep in adaptive and user-steered workflow. , $2011, , .$		15
90	Many task computing for orthologous genes identification in protozoan genomes using Hydra. Concurrency Computation Practice and Experience, 2011, 23, 2326-2337.	2.2	8

#	Article	IF	CITATIONS
91	SciPhy: A Cloud-Based Workflow for Phylogenetic Analysis of Drug Targets in Protozoan Genomes. Lecture Notes in Computer Science, 2011, , 66-70.	1.3	26
92	An algebraic approach for data-centric scientific workflows. Proceedings of the VLDB Endowment, 2011, 4, 1328-1339.	3.8	56
93	Adaptive Normalization: A novel data normalization approach for non-stationary time series., 2010,,.		74
94	Data parallelism in bioinformatics workflows using Hydra. , 2010, , .		15
95	Towards supporting the life cycle of large scale scientific experiments. International Journal of Business Process Integration and Management, 2010, 5, 79.	0.0	75
96	SciCumulus: A Lightweight Cloud Middleware to Explore Many Task Computing Paradigm in Scientific Workflows. , 2010 , , .		89
97	Improving Many-Task computing in scientific workflows using P2P techniques. , 2010, , .		1
98	Towards a Taxonomy for Cloud Computing from an e-Science Perspective. Computer Communications and Networks, 2010, , 47-62.	0.8	34
99	GExpLine: A Tool for Supporting Experiment Composition. Lecture Notes in Computer Science, 2010, , 251-259.	1.3	4
100	Using Ontologies to Support Deep Water Oil Exploration Scientific Workflows., 2009,,.		1
101	Exploring many task computing in scientific workflows. , 2009, , .		24
102	Definição de Parâmetros do Spark por meio de Aprendizado de Máquina: um Estudo com Dataflows de Astronomia. , 0, , .		0
103	PolRoute-DS: um Dataset de Dados Criminais para Geração de Rotas de Patrulhamento Policial. , 0, , .		0
104	Análise Integrada de Grafos de Proveniência Heterogêneos por meio de uma Abordagem PolyStore. , 0, ,		0
105	Um Estudo Comparativo de Mecanismos de Privacidade Diferencial sobre um Dataset de Ocorrências do ZIKV no BrasilÂ-, 0, , .		0
106	Análise de Hiperparâmetros em Aplicações de Aprendizado Profundo por meio de Dados de Proveniência. , 0, , .		2
107	Gerência de Dados de Proveniência DistribuÃdos de Experimentos CientÃficos: um Mapeamento Sistemático. , 0, , .		0
108	HELIX: A data-driven characterization of Brazilian land snails. , 0, , .		0